Strong coupled fixed point results in fuzzy cone metric spaces

Document Type : Regular Articles

Authors

1 Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt.

2 Department of Mathematics, Faculty of Science, Assuit University, Assuit 71516, Egypt.

Abstract

Abstract: In this paper, strong coupled fixed point theorems are obtained for coupled Kannan-type contraction mappings in the setting of fuzzy cone metric spaces. Moreover, to support our results, non-trivial examples are given. Our results generalize and extend a lot of papers in the literatures.

Main Subjects


References
[1] Agarwal, R. P.; Meehan, M.; O’Regan, D.; Fixed point theory and applications, Cambridge University, 2006.
[2] Lan, K.Q.; Wu, J.H.; A fixed-point theorem and applications to problems on sets with convex sections and to Nash
equilibria, Mathematical and Computer Modeling, 2002, 36, 139-145.
[3] Khan, M.S.; Berzig, M.; Chandok, S.; Fixed point theorems in bimetric space endowed with a binary relation and
application, Miskolc Mathematical Notes, 2015, 16(2), 939– 951.
[4] Ben Amar, A.; Jeribi, A.; Mnif, M.; Some fixed point theorems and application to biological model, Numerical
Functional Analysis and Optimization, 2008, 29, 1-23.
[5] Lan, K. Q.; Wu, J. H.; A fixed point theorem and applications to problems on sets with convex sections and
to Nash equilibria, Mathematical and Computer Modeling, 2002, 36, 139-145.
[6] Guran, L.; Mitrovic, Z. D.; Reddy, G. S. M.; Belhenniche, ´A.; Radenovic, S.; Applications of a fixed point result ´
for solving nonlinear fractional and integral differential equations, Fractal Fract., 2021, 5(4), 211.
[7] Kirk, W. A.; Srinivasan, P. S.; Veermani, P.; Fixed points for mappings satisfying cyclic contractive conditions, Fixed
Point Theory, 2003, 4, 79–89.
[8] Lakshmikantham, V.; Ciric, L.; Coupled fixed point theorems for nonlinear contractions in partially ordered
metric spaces, Nonlinear Anal., 2009, 70, 4341–4349.
[9] Choudhury, B. S.; Maity, P.; Cyclic coupled fixed point result using Kannan type contractions, Journal of
Operators, 2014, Article ID 876749.
[10] Eke, K. S.; Olisama, V. O.; Bishop, S. A.; Liu, L.; Some fixed point theorems for convex contractive mappings in
complete metric spaces with applications, Cogent. Math. Stat., 2019, 6, Article ID 1655870.
[11] Luong, N. V.; Thuan, N. X.; Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal.,
2011, 74, 983-992.
[12] Hammad, H. A.; Albaqeri, D. M.; Rashwan, R. A.; Coupled coincidence point technique and its application for solving
nonlinear integral equations in RPOCbML spaces, J. Egypt. Math. Soc., 2020, 28, Article ID 8.
[13] Berinde, V.; Coupled coincidence point theorems for mixed monotone non linear operators, Computers Mathematics
with Applications, 2012, 64(6), 1770-1777.
[14] Shatanawi, W.; Coupled fixed point theorems in generalized metric spaces, Hacet. J. Math. Stat., 2011, 40, 441–447.
[15] Samet, B.; Vetro, C.; Coupled fixed point F-invariant set and fixed point of N-order, Ann. Funct. Anal., 2010, 2, 46–56.
[16] Bhaskar, T. G.; Lakshmikantham, V.; Fixed point theorems in partially ordered metric spaces and applications,
Nonlinear Anal., TMA., 2006, 65, 1379–1393.
[17] Huang, L.; Zhang, X.; Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl.,
2007, 332, 1468–1476.
[18] Zadeh, L. A.; Fuzzy set, Inform. Control, 1965, 8, 338–353.
[19] Kramosil, O.; Michalek, J.; Fuzzy metric and statistical metric spaces, Kybernetika., 1975, 11, 336–344.
[20] Ilic, D.; Rako ´ cevi ˇ c, V.; Common fixed points for maps on ´cone metric space, Journal of Mathematical Analysis and
Applications, 2008, 341(2), 876–882.
[21] Oner, T.; Kandemire, M. B.; Tanay, B.; Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 2015, 8, 610–616.
[22] Chen, G. X.; Jabeen, S.; Rehman, S.U. et al.; Coupled fixed point analysis in fuzzy cone metric spaces with an
application to nonlinear integral equations, Advances in Difference Equations, 2020, Article ID 671.
[23] Samet, B.; Vetro, C.; Coupled fixed point F-invariant set and fixed point of N-order, Ann. Funct. Anal., 2010, 2, 46–56.
[24] Kiyani, F.; Amini-Haradi, A.; Fixed point and endpoint theorems for set-valued fuzzy contraction maps in fuzzy metric spaces, Fixed Point Theory Appl., 2011, Article ID 94.
[25] Rashwan, R. A.; Hammad, H. A.; Nafea, A.; A new contribution in fuzzy cone metric spaces by strong fixed
point techniques with supportive application, Journal of Intelligent and Fuzzy Systems, 2022, 42, 3923-3943.
[26] Rehman, S. U.; Li, H. X.; Fixed point theorems in fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 2017, 10, 5763–
5769.