Geomagnetic characterization of a basaltic intrusion and its tectonic implications, Eastern Desert, Egypt

Document Type : Regular Articles

Authors

Sohag University Faculty of science, Geology Department

Abstract

The purpose of this study is to define the geographic area of an estimated depth to an Eastern desert intrusion near wadi Qena. The study also clarified the many stages of deformations connected to this intrusion. Aeromagnetic data was employed using the goal of this investigation for this purpose. Along with the underlying structure, these intrusions' depths and magnetic susceptibilities were evaluated. To get RTP magnetic data with anomalies concentrated on the subsurface causal bodies, the magnetic data was reduced to the North Pole. Various filtering methods were used. The power spectrum approach was used to determine the distance to the causative bodies. The maps reveal significant magnetic anomalies caused by basaltic intrusion inside sedimentary strata with a general NNW-SSE trend and very probable multi-phase intrusion activity. Calcite crystals were seen in a few of the measured joints. Various techniques are used to determine the major depth to the causative bodies.

Keywords

Main Subjects


  1. Abdel Moneim A., (1988). Hydrogeology of the Nile basin in Sohag province. MSc Thesis, Geol. Dept., Fac. Sci., Assiut Univ., Egypt
  2. Baranov, V., (1957). A New Method for Interpretation of Aeromagnetic Maps, Pseudo-Gravimetric Anomalies. Geophysics, 22, 359-363.
  3. Blakely R.J., (1996). Potential theory in gravity and magnetic applications. Cambridge University Press,
  4. Blakely R.J., Simpson R.W., (1986). Approximating edges of source bodies from magnetic or gravity anomalies Geophysics 51,1494-1498
  5. Chennouf T., Khattach D., Milhi A., Andrieux P., Keating P. (2007). Principales lignes structurales du Maroc nord-oriental: apport de la gravimétrie Comptes Rendus Geoscience 339,383-395
  6. Conoco, (1987). Geologic map of Egypt scale 1:500,000 Assiut and Bemi Suef, The Egyption General Petroleum Corporation (EGPC), Egypt
  7. Cooper, G.R.J., (1997). GravMap and Pf Proc software for filtering geophysical map data. Comput. 23 (1), 91–101.
  8. Cordell L, Grauch, (1982). V Mapping Basement Magnetization Zones From Aeromagnetic Data In the San Juan Basin New Mexico. In: 1982 SEG Annual Meeting, Society of Exploration Geophysicists,
  9. Cordell L., Grauch V. (1985). Mapping basement magnetization zones from aeromagnetic data in the The utility of regional gravity and magnetic anomaly maps:181
  10. CONOCO (1987). Geological map of Egypt, Scale 1: 500,000, Assiut and Beni Suef. The Egyptian General Petroleum Corporation, Cairo (EGPC), Egypt.
  11. Durrheim R.J., Cooper G.R.J., (1998). EULDEP: a program for the Euler deconvolution of magnetic and gravity data, Comput. Geosci. 24, 545–550.
  12. EGPC and CONCCO (1987). Geological map of Egypt scale 1:500,000. Cairo, Egypt.
  13. EGSMA (1983). Geological map of Gebel el “urf quadrangles, Egypt. scale 1:250000. Geological Survey Egypt. Cairo.
  14. EGSMA (2006). Geological map of Abu had quadrangle. Egypt Scale 1:100000.
  15. EGSMA (1983) Geological map of Gebel el ‘urf quadrangles, Egypt, scale 1:250000. Geological Survey Egypt, Cairo.
  16. EGSMA (2006) Geological map of Abu had quadrangle. Egypt Scale 1:100000.
  17. Everaerts M, Mansy J-L (2001). Le filtrage des anomalies gravimetriques; une cle pour la comprehension des structures tectoniques du Boulonnais et de l'Artois (France) Bulletin de la Société géologique de France 172,267-274
  18. Gay S.P.Jr., (1972). Fundamental characteristics of aeromagnetic lineaments, their geologic significance, and their significant to geology. "The New Basement Tectonics" American Stereo Map Company, Salt Lake City, Utah:.94.
  19. Hansen R., Pawlowski R. (1989). Reduction to the pole at low latitudes by Wiener filtering Geophysics 54,1607-1613
  20. Hesham S.Z., Hesham T., (2016). Application of high-pass filtering techniques on gravity and magnetic data of the eastern Qattara Depression area, Western Desert, Egypt, NRIAG Journal of Astronomy and Geophysics, 5,106–123.
  21. Ismaiel HA, Badry MM (2012). Geotechnical Evaluation of Sedimentary Rocks and Karstification Phenomena of Carbonates Exposed along New Upper Egypt-Red Sea Road, Eastern Desert, Egypt Journal of Earth Science and Engineering 2,636-647
  22. Keheila EA, El-Ayyat AAM (1990). Lower Eocene carbonate facies, environments and sedimentary cycles in Upper Egypt: evidence for global sea-level changes Palaeogeography, Palaeoclimatology, Palaeoecology 81,33-47.
  23. Khalil A., Abdel Hafeez T.H., Saleh H.S., Mohamed H. W., (2016). Inferring the subsurface basement depth and the structural trends as deduced from aeromagnetic data at West Beni Suef area, Western Desert, Egypt, NRIAG Journal of Astronomy and Geophysics, 5, 380–392.
  24. Khattach D, Mraoui H, Sbibih D, Chennouf T (2006). Analyse multi-échelle par ondelettes des contacts géologiques: application à la carte gravimétrique du Maroc nord-oriental Comptes Rendus Geoscience 338,521-526
  25. Kivior I., Boyd D., (1998). Interpretation of the aeromagnetic experimental survey in the Eromanga/Cooper basin. Can. J. Explor. Geoph., 34, 58-66.
  26. Ku, C.C. and Sharp, J.A., (1983). Werner deconvolution for automated magnetic interpretation and its refinement using Marquart's inverse modeling. Geophysics, 48(6),754-774
  27. Phillips, J. D., (1997). Potential-Field Geophysical Software for the PC, version 2.2: USGS Open-File Report 97-725.
  28. Reid A.B., Allsop J.M., Granser H., Millett A.J. and Somerton I.W., (1990). Magnetic interpretation in three dimensions using Euler Deconvolution. Geophysics, 55, 80-90.
  29. Shaaban MN (2004). Diagenesis of the lower Eocene Thebes Formation, Gebel Rewagen area, Eastern Desert, Egypt Sedimentary Geology 165.53-65
  30. Spector, A. and Grant, F.S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, Vol. 35, PP. 293-302.
  31. Thompson D.T., (1982). EULDPH- A New technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47.31–37.