Protective effect of bradykinin potentiating factor on haematological parameters of diabetic male albino rats

Document Type : Regular Articles

Authors

Zoology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt

Abstract

The aim of the study was to evaluate the protective effect of bradykinin potentiating factor extracted from honey bee venom, Apis mellifera on hematological parameters in diabetic rats. Forty adult male albino rats classified into five groups, control group (G1), STZ diabetic group (G2), BPF group (G3), pre-treatment group BPF+STZ (G4) and post-treatment groupSTZ+BPF (G5). After 30 days from treatment, rats were sacrificed and dissected and the blood were collected from heart. In blood samples, RBCs, HGB, HCT, PLTs, MCV, MCH, WBCs and differential leucocyte count were examined. In the study, STZ diabetic group (G2) showed a significant (P<0.05) and highly significant (p<0.001) decrease in all tested haematological parameters except MCV and MCH, which showed non-significant change (P>0.05) compared to control value. These parameters showed improvement in pre- and post- treated groups as compared to diabetic group. In conclusion our results revealed a Protective effect of bradykinin potentiating factor on haematological parameters of diabetic male rats

Keywords

Main Subjects


[1]Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.; Jamshidi, S.; Farhangi, A.; Verdi, A. A.; Mofidian, S.; Rad, B. Induction of diabetes by streptozotocin in rats. Indian Journal of Clinical Biochemistry, 2007, 22, 60-64.
[2]Osadebe, P. O.; Odoh, E. U.; Uzor, P. F. Natural products as potential sources of antidiabetic drugs. Journal of Pharmaceutical Research International, 2014, 2075-2095.
[3]Abdela, N.; Jilo, K. Bee venom and its therapeutic values: a review. Adv Life Sci Technol , 2016, 44, 18-22.
[4]Chen, J.; Lariviere, W. R. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Progress in neurobiology, 2010, 92, 151-183.
[5]Danneels, E. L.; Van Vaerenbergh, M.; Debyser, G.; Devreese, B.; De Graaf, D. C. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins, 2015, 7, 4468-4483.
[6]Son, D. J.; Lee, J. W.; Lee, Y. H.; Song, H. S.; Lee, C. K.; Hong, J. T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & therapeutics, 2007, 115, 246-270.
[7]Tu, W.C.; Wu, C.C.; Hsieh, H.-L.; Chen, C.Y.; Hsu, S.L. Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon, 2008, 52, 318-329.
[8]Jang, H.-S.; Chung, H.S.; Ko, E.; Shin, J.S.; Shin, M.-K.; Hong, M.C.; Kim, Y.; Min, B.-I.; Bae, H. Microarray analysis of gene expression profiles in response to treatment with bee venom in lipopolysaccharide activated RAW 264.7 cells. Journal of ethnopharmacology, 2009, 121, 213-220.
[9]Lee, K.-G.; Cho, H.-J.; Bae, Y.-S.; Park, K.-K.; Choe, J.-Y.; Chung, I.-K.; Kim, M.; Yeo, J.-H.; Park, K.-H.; Lee, Y.-S. Bee venom suppresses LPS-mediated NO/iNOS induction through inhibition of PKC-α expression. Journal of ethnopharmacology, 2009, 123, 15-21.
[10]Elshater, A.-E. A.; Mohi Eldin, M. M.; Salman, M.; Kasem, N. R. The curative effect of Bee Venom and Propolis on oxidative stress induced by γ-irradiation on blood and tissues of rats. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 2014, 6, 53-69.
[11]Seo, S.-W.; Jung, W.-S.; Lee, S.-E.; Choi, C.-M.; Shin, B.-C.; Kim, E.-K.; Kwon, K.-B.; Hong, S.-H.; Yun, K.-J.; Park, R.-K. Effects of bee venom on cholecystokinin octapeptide-induced acute pancreatitis in rats. Pancreas ,2008, 36, e22-e29.
[12]Darwish, S. F.; El-Bakly, W. M.; Arafa, H. M.; El-Demerdash, E. Targeting TNF-α and NF-κB activation by bee venom: role in suppressing adjuvant induced arthritis and methotrexate hepatotoxicity in rats. PLoS One ,2013, 8, e79284.
[13]Gajski, G.; Garaj-Vrhovac, V. Radioprotective effects of honeybee venom (Apis mellifera) against 915-mhz microwave radiation–induced DNA damage in wistar rat lymphocytes: In vitro study. International journal of toxicology ,2009, 28, 88-98.
[14]Oršolić, N. Bee venom in cancer therapy. Cancer and metastasis reviews ,2012, 31, 173-194.
[15]Behroozi, J.; Divsalar, A.; Saboury, A. A. Honey bee venom decreases the complications of diabetes by preventing hemoglobin glycation. Journal of Molecular Liquids, 2014, 199, 371-375.
[16]Ferreira, S.; Greene, L.; Alabaster, V. A.; Bakhle, Y.; Vane, J. Activity of various fractions of bradykinin potentiating factor against angiotensin I converting enzyme. Nature ,1970, 225, 379-380.
[17]Camargo, A. C.; Ianzer, D.; Guerreiro, J. R.; Serrano, S. M. Bradykinin-potentiating peptides: beyond captopril. Toxicon, 2012, 59, 516-523.
[18]Jain, R. K. Molecular regulation of vessel maturation. Nature medicine, 2003, 9, 685-693.
[19]Sonveaux, P. Provascular strategy: targeting functional adaptations of mature blood vessels in tumors to selectively influence the tumor vascular reactivity and improve cancer treatment. Radiotherapy and Oncology ,2008, 86, 300-313.
[20]Abd-El-Raheim, S. Physiological studies of a separated fraction from, the venom of Egyptian scorpion on the living cells of some organs. Ph. D. Thesis Assuit Univ.(Sohag Campus), 1990.
[21]Nassar, A. Y.; Abu-Sinna, G.; Rahim, S. A. Effect of a bradykinin potentiating fraction, from venom of the Egyptian scorpion, Buthus occitanus, on the ovaries and endometrium of mice. Toxicon ,1990, 28, 525-534.
[22]El-Saadani, M. A. A scorpion venom peptide fraction induced prostaglandin biosynthesis in guinea pig kidneys: incorporation of 14C-linoleic acid. Journal of biochemistry, 2004, 135, 109-116.
[23]Mellitus, D. Diagnosis and classification of diabetes mellitus. Diabetes care, 2005, 28, S5-S10.
[24]Thomas, M. C.; MacIsaac, R. J.; Tsalamandris, C.; Power, D.; Jerums, G. Unrecognized anemia in patients with diabetes: a cross-sectional survey. Diabetes care, 2003, 26, 1164-1169.
[25]Simchon, S.; Jan, K.-M.; Chien, S. Influence of reduced red cell deformability on regional blood flow. American Journal of Physiology-Heart and Circulatory Physiology, 1987, 253, H898-H903.
[26]Brown, C. D.; Ghali, H. S.; Zhao, Z.; Thomas, L. L.; Friedman, E. Association of reduced red blood cell deformability and diabetic nephropathy. Kidney international ,2005, 67, 295-300.
[27]Awasthi, S.; Gayathiri, S.; Ramya, R.; Duraichelvan, R.; Dhason, A.; Saraswathi, N. Advanced glycation-modified human serum albumin evokes alterations in membrane and eryptosis in erythrocytes. Applied biochemistry and biotechnology, 2015, 177, 1013-1024.
[28]Chen, P.-M.; Gregersen, H.; Zhao, J.-B. Advanced glycation end-product expression is upregulated in the gastrointestinal tract of type 2 diabetic rats. World journal of diabetes ,2015, 6, 662.
[29]Sila, A.; Kamoun, Z.; Ghlissi, Z.; Makni, M.; Nasri, M.; Sahnoun, Z.; Nedjar-Arroume, N.; Bougatef, A. Ability of natural astaxanthin from shrimp by-products to attenuate liver oxidative stress in diabetic rats. Pharmacological reports, 2015, 67, 310-316.
[30]Diederich, L.; Suvorava, T.; Sansone, R.; Keller IV, T.; Barbarino, F.; Sutton, T. R.; Kramer, C. M.; Lückstädt, W.; Isakson, B. E.; Gohlke, H. On the effects of reactive oxygen species and nitric oxide on red blood cell deformability. Frontiers in physiology, 2018, 9, 332.
[31]Shilov, A.; Avshalumov, A. S.; Markovsky, V.; Sinitsyna, E.; Poleshchuk, O. Changes of blood rheological properties in patients with metabolic syndrome. Russ. Med. J, 2008, 4, 200-204.
[32]Miikue-Yobe, T. F. B. Effect of aqueous leaf extract of Heinsia crinata on haematological and some biochemical indices of toxicity in streptozotocin induced diabetic rats. International Journal for Innovative Research in Science & Technology ,2015, 2, 116-126.
[33]Wesseling, M. C.; Wagner-Britz, L.; Huppert, H.; Hanf, B.; Hertz, L.; Nguyen, D. B.; Bernhardt, I. Phosphatidylserine exposure in human red blood cells depending on cell age. Cellular physiology and biochemistry, 2016, 38, 1376-1390.
[34]Vercaemst, L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. The Journal of extra-corporeal Technology ,2008, 40, 257.
[35]Bashiru Shola, O.; Olatunde Olugbenga, F. Hyperglycaemic environment: contribution to the anaemia associated with diabetes mellitus in rats experimentally induced with alloxan. Anemia, 2015, 2015.
[36]de Jong, K.; Emerson, R. K.; Butler, J.; Bastacky, J.; Mohandas, N.; Kuypers, F. A. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood, The Journal of the American Society of Hematology ,2001, 98, 1577-1584.
[37]Oyedemi, S.; Adewusi, E.; Aiyegoro, O.; Akinpelu, D. Antidiabetic and haematological effect of aqueous extract of stem bark of Afzelia africana (Smith) on streptozotocin–induced diabetic Wistar rats. Asian Pacific journal of tropical biomedicine ,2011, 1, 353-358.
[38]Oyedemi, S.; Yakubu, M.; Afolayan, A. Effect of aqueous extract of Leonotis leonurus (L.) R. Br. leaves in male Wistar rats. Human & experimental toxicology ,2010, 29, 377-384.
[39]Torel, J.; Cillard, J.; Cillard, P. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry, 1986, 25, 383-385.
[40]Jarald, E.; Joshi, S. B.; Jain, D. Diabetes and herbal medicines. 2008.
[41]Fırat, U.; Kaya, S.; Çim, A.; Büyükbayram, H.; Gökalp, O.; Dal, M. S.; Tamer, M. N. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. Experimental Diabetes Research ,2012.
[42]Odoh, U.; Onugha, V.; Chukwube, V. Evaluation of antidiabetic effect and hematotological profile of methanol extract of Ceiba pentandra G (Malvaceae) stem bark on alloxan-induced diabetic rats. African Journal of Pharmacy and Pharmacology, 2016, 10, 584-590.
[43]Gamede, M.; Mabuza, L.; Ngubane, P.; Khathi, A. The effects of plant-derived oleanolic acid on selected parameters of glucose homeostasis in a diet-induced pre-diabetic rat model. Molecules ,2018, 23, 794.
[44]Lippi, G.; Targher, G.; Salvagno, G. L.; Guidi, G. C. Increased red blood cell distribution width (RDW) is associated with higher glycosylated hemoglobin (HbA1c) in the elderly. Clin Lab ,2014, 60, 2095-2098.
[45]Basivireddy, J.; Vasudevan, A.; Jacob, M.; Balasubramanian, K. A. Indomethacin-induced mitochondrial dysfunction and oxidative stress in villus enterocytes. Biochemical pharmacology ,2002, 64, 339-349.
[46]Strom, B. L.; Carson, J. L.; Schinnar, R.; Snyder, E. S.; Shaw, M.; Lundin, F. E. Nonsteroidal anti-inflammatory drugs and neutropenia. Archives of internal medicine, 1993, 153, 2119-2124.
[47]Muller, Y. D.; Golshayan, D.; Ehirchiou, D.; Wyss, J. C.; Giovannoni, L.; Meier, R.; Serre-Beinier, V.; Puga Yung, G.; Morel, P.; Bühler, L. H. Immunosuppressive effects of streptozotocin-induced diabetes result in absolute lymphopenia and a relative increase of T regulatory cells. Diabetes ,2011, 60, 2331-2340.
[48]Keskin, E.; Dönmez, N.; Kılıçarslan, G.; Kandır, S. Beneficial effect of quercetin on some haematological parameters in streptozotocin-induced diabetic rats. Bull Environ Pharmacol Life Sci ,2016, 5, 65-68.
[49]Jimeno, J.; Faircloth, G.; Sousa-Faro, J.; Scheuer, P.; Rinehart, K. New marine derived anticancer therapeutics─ a journey from the sea to clinical trials. Marine Drugs, 2004, 2, 14-29.
[50]Proksch, P.; Edrada-Ebel, R.; Ebel, R. Drugs from the sea-opportunities and obstacles. Marine Drugs ,2003, 1, 5-17.
[51]Cragg, G. M.; Newman, D. J. Discovery and development of antineoplastic agents from natural sources. Cancer investigation ,1999, 17, 153-163.
[52]Mayer, A. M.; Hamann, M. T. Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002, 132, 315-339.
[53]Mayer, A. M.; Rodríguez, A. D.; Berlinck, R. G.; Hamann, M. T. Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochimica et Biophysica Acta (BBA)-General Subjects, 2009, 1790, 283-308.
[54]McLean, P. G.; Ahluwalia, A.; Perretti, M. Association between kinin B1 receptor expression and leukocyte trafficking across mouse mesenteric postcapillary venules. The Journal of experimental medicine ,2000, 192, 367-380.
[55]Chihara, K.; Iwasaki, J.; Minamitani, N.; Kaji, H.; Matsukura, S.; Tamaki, N.; Matsumoto, S. Effect of vasoactive intestinal polypeptide on growth hormone secretion in perifused acromegalic pituitary adenoma tissues. The Journal of Clinical Endocrinology & Metabolism, 1982, 54, 773-779.
[56]Enjalbert, A.; Arancibia, S.; Ruberg, M.; Priam, M.; Bluet-Pajot, M.; Rotsztejn, W.; Kordon, C. Stimulation of in vitro prolactin release by vasoactive intestinal peptide. Neuroendocrinology ,1980, 31, 200-204.
[57]Frawley, L.; Neill, J. Stimulation of prolactin secretion in rhesus monkeys by vasoactive intestinal polypeptide. Neuroendocrinology ,1981, 33, 79-83.
[58]Vijayan, E.; Samson, W.; Said, S.; McCann, S. Vasoactive intestinal peptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone, and prolactin in conscious ovariectomized rats. Endocrinology ,1979, 104, 53-57.
[59]Li, N.; Zhou, L.; Zhang, B.; Dong, P.; Lin, W.; Wang, H.; Xu, R.; Ding, H. Recombinant human growth hormone increases albumin and prolongs survival in patients with chronic liver failure: a pilot open, randomized, and controlled clinical trial. Digestive and Liver Disease ,2008, 40, 554-559.
[60]Moller, N.; Vendelbo, M. H.; Kampmann, U.; Christensen, B.; Madsen, M.; Norrelund, H.; Jorgensen, J. O. Growth hormone and protein metabolism. Clinical Nutrition, 2009, 28, 597-603.
[61]Montgomery, R.; Conway, T. W.; Spector, A. A.; Chappell, D.: Biochemistry: a case-oriented approach; Mosby Incorporated, 1996; Vol. 10.
[62]Peng, M.-Y.; Zhao, X.-L.; Gao, X.; Lei, H.-Y. Renin angiotensin system in bone marrow of patients with aplastic anemia. Zhongguo shi yan xue ye xue za zhi ,2006, 14, 512-515.
[63]Ganong, W. F. Review of medical physiology. Dynamics of blood and lymph flow ,1995, 30, 525-541.
[64]Piron, M.; Loo, M.; Gothot, A.; Tassin, F.; Fillet, G.; Beguin, Y. Cessation of intensive treatment with recombinant human erythropoietin is followed by secondary anemia. Blood, The Journal of the American Society of Hematology, 2001, 97, 442-448.
[65]Abu Amra, E.; El Rehim, S. A. A.; Lashein, F. M.; Shoaeb, H. S. Effect of a bradykinin potentiating factor separated from honey bee venom on thyroid gland and testis in hypothyroid white rats. The Journal of Basic and Applied Zoology ,2022, 83, 1-10.
[66]Levant, A.; Levy, E.; Argaman, M.; Fleisher-Berkovich, S. Kinins and neuroinflammation: dual effect on prostaglandin synthesis. European journal of pharmacology ,2006, 546, 197-200.
[67]Kornberg, A.; Rachmilewitz, E. Aplastic anemia after prolonged ingestion of indomethacin. Acta Haematologica ,1982, 67, 136-138.
[68]Hoffbrand, A. V.; Steensma, D. P.: Hoffbrand's essential haematology; John Wiley & Sons, 2019.
[69]Allen, J. E.; Valeri, C. R. Prostaglandins in hematology. Archives of Internal Medicine, 1974, 133, 86-96.
[70]Ribardo, D. A.; Crowe, S. E.; Kuhl, K. R.; Peterson, J. W.; Chopra, A. K. Prostaglandin levels in stimulated macrophages are controlled by phospholipase A2-activating protein and by activation of phospholipase C and D. Journal of Biological Chemistry ,2001, 276, 5467-5475.
[71]Salzman, E.; Weisenberger, H. Role of cyclic AMP in platelet function. Advances in cyclic nucleotide research ,1972, 1, 231-247.
[72]Ferreira, S. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. British journal of pharmacology and chemotherapy ,1965, 24, 163.
[73]Festa, A.; D’Agostino Jr, R.; Tracy, R. P.; Haffner, S. M. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes ,2002, 51, 1131-1137.