[1]Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.; Jamshidi, S.; Farhangi, A.; Verdi, A. A.; Mofidian, S.; Rad, B. Induction of diabetes by streptozotocin in rats. Indian Journal of Clinical Biochemistry, 2007, 22, 60-64.
[2]Osadebe, P. O.; Odoh, E. U.; Uzor, P. F. Natural products as potential sources of antidiabetic drugs. Journal of Pharmaceutical Research International, 2014, 2075-2095.
[3]Abdela, N.; Jilo, K. Bee venom and its therapeutic values: a review. Adv Life Sci Technol , 2016, 44, 18-22.
[4]Chen, J.; Lariviere, W. R. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Progress in neurobiology, 2010, 92, 151-183.
[5]Danneels, E. L.; Van Vaerenbergh, M.; Debyser, G.; Devreese, B.; De Graaf, D. C. Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins, 2015, 7, 4468-4483.
[6]Son, D. J.; Lee, J. W.; Lee, Y. H.; Song, H. S.; Lee, C. K.; Hong, J. T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & therapeutics, 2007, 115, 246-270.
[7]Tu, W.C.; Wu, C.C.; Hsieh, H.-L.; Chen, C.Y.; Hsu, S.L. Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon, 2008, 52, 318-329.
[8]Jang, H.-S.; Chung, H.S.; Ko, E.; Shin, J.S.; Shin, M.-K.; Hong, M.C.; Kim, Y.; Min, B.-I.; Bae, H. Microarray analysis of gene expression profiles in response to treatment with bee venom in lipopolysaccharide activated RAW 264.7 cells. Journal of ethnopharmacology, 2009, 121, 213-220.
[9]Lee, K.-G.; Cho, H.-J.; Bae, Y.-S.; Park, K.-K.; Choe, J.-Y.; Chung, I.-K.; Kim, M.; Yeo, J.-H.; Park, K.-H.; Lee, Y.-S. Bee venom suppresses LPS-mediated NO/iNOS induction through inhibition of PKC-α expression. Journal of ethnopharmacology, 2009, 123, 15-21.
[10]Elshater, A.-E. A.; Mohi Eldin, M. M.; Salman, M.; Kasem, N. R. The curative effect of Bee Venom and Propolis on oxidative stress induced by γ-irradiation on blood and tissues of rats. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 2014, 6, 53-69.
[11]Seo, S.-W.; Jung, W.-S.; Lee, S.-E.; Choi, C.-M.; Shin, B.-C.; Kim, E.-K.; Kwon, K.-B.; Hong, S.-H.; Yun, K.-J.; Park, R.-K. Effects of bee venom on cholecystokinin octapeptide-induced acute pancreatitis in rats. Pancreas ,2008, 36, e22-e29.
[12]Darwish, S. F.; El-Bakly, W. M.; Arafa, H. M.; El-Demerdash, E. Targeting TNF-α and NF-κB activation by bee venom: role in suppressing adjuvant induced arthritis and methotrexate hepatotoxicity in rats. PLoS One ,2013, 8, e79284.
[13]Gajski, G.; Garaj-Vrhovac, V. Radioprotective effects of honeybee venom (Apis mellifera) against 915-mhz microwave radiation–induced DNA damage in wistar rat lymphocytes: In vitro study. International journal of toxicology ,2009, 28, 88-98.
[14]Oršolić, N. Bee venom in cancer therapy. Cancer and metastasis reviews ,2012, 31, 173-194.
[15]Behroozi, J.; Divsalar, A.; Saboury, A. A. Honey bee venom decreases the complications of diabetes by preventing hemoglobin glycation. Journal of Molecular Liquids, 2014, 199, 371-375.
[16]Ferreira, S.; Greene, L.; Alabaster, V. A.; Bakhle, Y.; Vane, J. Activity of various fractions of bradykinin potentiating factor against angiotensin I converting enzyme. Nature ,1970, 225, 379-380.
[17]Camargo, A. C.; Ianzer, D.; Guerreiro, J. R.; Serrano, S. M. Bradykinin-potentiating peptides: beyond captopril. Toxicon, 2012, 59, 516-523.
[18]Jain, R. K. Molecular regulation of vessel maturation. Nature medicine, 2003, 9, 685-693.
[19]Sonveaux, P. Provascular strategy: targeting functional adaptations of mature blood vessels in tumors to selectively influence the tumor vascular reactivity and improve cancer treatment. Radiotherapy and Oncology ,2008, 86, 300-313.
[20]Abd-El-Raheim, S. Physiological studies of a separated fraction from, the venom of Egyptian scorpion on the living cells of some organs. Ph. D. Thesis Assuit Univ.(Sohag Campus), 1990.
[21]Nassar, A. Y.; Abu-Sinna, G.; Rahim, S. A. Effect of a bradykinin potentiating fraction, from venom of the Egyptian scorpion, Buthus occitanus, on the ovaries and endometrium of mice. Toxicon ,1990, 28, 525-534.
[22]El-Saadani, M. A. A scorpion venom peptide fraction induced prostaglandin biosynthesis in guinea pig kidneys: incorporation of 14C-linoleic acid. Journal of biochemistry, 2004, 135, 109-116.
[23]Mellitus, D. Diagnosis and classification of diabetes mellitus. Diabetes care, 2005, 28, S5-S10.
[24]Thomas, M. C.; MacIsaac, R. J.; Tsalamandris, C.; Power, D.; Jerums, G. Unrecognized anemia in patients with diabetes: a cross-sectional survey. Diabetes care, 2003, 26, 1164-1169.
[25]Simchon, S.; Jan, K.-M.; Chien, S. Influence of reduced red cell deformability on regional blood flow. American Journal of Physiology-Heart and Circulatory Physiology, 1987, 253, H898-H903.
[26]Brown, C. D.; Ghali, H. S.; Zhao, Z.; Thomas, L. L.; Friedman, E. Association of reduced red blood cell deformability and diabetic nephropathy. Kidney international ,2005, 67, 295-300.
[27]Awasthi, S.; Gayathiri, S.; Ramya, R.; Duraichelvan, R.; Dhason, A.; Saraswathi, N. Advanced glycation-modified human serum albumin evokes alterations in membrane and eryptosis in erythrocytes. Applied biochemistry and biotechnology, 2015, 177, 1013-1024.
[28]Chen, P.-M.; Gregersen, H.; Zhao, J.-B. Advanced glycation end-product expression is upregulated in the gastrointestinal tract of type 2 diabetic rats. World journal of diabetes ,2015, 6, 662.
[29]Sila, A.; Kamoun, Z.; Ghlissi, Z.; Makni, M.; Nasri, M.; Sahnoun, Z.; Nedjar-Arroume, N.; Bougatef, A. Ability of natural astaxanthin from shrimp by-products to attenuate liver oxidative stress in diabetic rats. Pharmacological reports, 2015, 67, 310-316.
[30]Diederich, L.; Suvorava, T.; Sansone, R.; Keller IV, T.; Barbarino, F.; Sutton, T. R.; Kramer, C. M.; Lückstädt, W.; Isakson, B. E.; Gohlke, H. On the effects of reactive oxygen species and nitric oxide on red blood cell deformability. Frontiers in physiology, 2018, 9, 332.
[31]Shilov, A.; Avshalumov, A. S.; Markovsky, V.; Sinitsyna, E.; Poleshchuk, O. Changes of blood rheological properties in patients with metabolic syndrome. Russ. Med. J, 2008, 4, 200-204.
[32]Miikue-Yobe, T. F. B. Effect of aqueous leaf extract of Heinsia crinata on haematological and some biochemical indices of toxicity in streptozotocin induced diabetic rats. International Journal for Innovative Research in Science & Technology ,2015, 2, 116-126.
[33]Wesseling, M. C.; Wagner-Britz, L.; Huppert, H.; Hanf, B.; Hertz, L.; Nguyen, D. B.; Bernhardt, I. Phosphatidylserine exposure in human red blood cells depending on cell age. Cellular physiology and biochemistry, 2016, 38, 1376-1390.
[34]Vercaemst, L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. The Journal of extra-corporeal Technology ,2008, 40, 257.
[35]Bashiru Shola, O.; Olatunde Olugbenga, F. Hyperglycaemic environment: contribution to the anaemia associated with diabetes mellitus in rats experimentally induced with alloxan. Anemia, 2015, 2015.
[36]de Jong, K.; Emerson, R. K.; Butler, J.; Bastacky, J.; Mohandas, N.; Kuypers, F. A. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood, The Journal of the American Society of Hematology ,2001, 98, 1577-1584.
[37]Oyedemi, S.; Adewusi, E.; Aiyegoro, O.; Akinpelu, D. Antidiabetic and haematological effect of aqueous extract of stem bark of Afzelia africana (Smith) on streptozotocin–induced diabetic Wistar rats. Asian Pacific journal of tropical biomedicine ,2011, 1, 353-358.
[38]Oyedemi, S.; Yakubu, M.; Afolayan, A. Effect of aqueous extract of Leonotis leonurus (L.) R. Br. leaves in male Wistar rats. Human & experimental toxicology ,2010, 29, 377-384.
[39]Torel, J.; Cillard, J.; Cillard, P. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry, 1986, 25, 383-385.
[40]Jarald, E.; Joshi, S. B.; Jain, D. Diabetes and herbal medicines. 2008.
[41]Fırat, U.; Kaya, S.; Çim, A.; Büyükbayram, H.; Gökalp, O.; Dal, M. S.; Tamer, M. N. Increased caspase-3 immunoreactivity of erythrocytes in STZ diabetic rats. Experimental Diabetes Research ,2012.
[42]Odoh, U.; Onugha, V.; Chukwube, V. Evaluation of antidiabetic effect and hematotological profile of methanol extract of Ceiba pentandra G (Malvaceae) stem bark on alloxan-induced diabetic rats. African Journal of Pharmacy and Pharmacology, 2016, 10, 584-590.
[43]Gamede, M.; Mabuza, L.; Ngubane, P.; Khathi, A. The effects of plant-derived oleanolic acid on selected parameters of glucose homeostasis in a diet-induced pre-diabetic rat model. Molecules ,2018, 23, 794.
[44]Lippi, G.; Targher, G.; Salvagno, G. L.; Guidi, G. C. Increased red blood cell distribution width (RDW) is associated with higher glycosylated hemoglobin (HbA1c) in the elderly. Clin Lab ,2014, 60, 2095-2098.
[45]Basivireddy, J.; Vasudevan, A.; Jacob, M.; Balasubramanian, K. A. Indomethacin-induced mitochondrial dysfunction and oxidative stress in villus enterocytes. Biochemical pharmacology ,2002, 64, 339-349.
[46]Strom, B. L.; Carson, J. L.; Schinnar, R.; Snyder, E. S.; Shaw, M.; Lundin, F. E. Nonsteroidal anti-inflammatory drugs and neutropenia. Archives of internal medicine, 1993, 153, 2119-2124.
[47]Muller, Y. D.; Golshayan, D.; Ehirchiou, D.; Wyss, J. C.; Giovannoni, L.; Meier, R.; Serre-Beinier, V.; Puga Yung, G.; Morel, P.; Bühler, L. H. Immunosuppressive effects of streptozotocin-induced diabetes result in absolute lymphopenia and a relative increase of T regulatory cells. Diabetes ,2011, 60, 2331-2340.
[48]Keskin, E.; Dönmez, N.; Kılıçarslan, G.; Kandır, S. Beneficial effect of quercetin on some haematological parameters in streptozotocin-induced diabetic rats. Bull Environ Pharmacol Life Sci ,2016, 5, 65-68.
[49]Jimeno, J.; Faircloth, G.; Sousa-Faro, J.; Scheuer, P.; Rinehart, K. New marine derived anticancer therapeutics─ a journey from the sea to clinical trials. Marine Drugs, 2004, 2, 14-29.
[50]Proksch, P.; Edrada-Ebel, R.; Ebel, R. Drugs from the sea-opportunities and obstacles. Marine Drugs ,2003, 1, 5-17.
[51]Cragg, G. M.; Newman, D. J. Discovery and development of antineoplastic agents from natural sources. Cancer investigation ,1999, 17, 153-163.
[52]Mayer, A. M.; Hamann, M. T. Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002, 132, 315-339.
[53]Mayer, A. M.; Rodríguez, A. D.; Berlinck, R. G.; Hamann, M. T. Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochimica et Biophysica Acta (BBA)-General Subjects, 2009, 1790, 283-308.
[54]McLean, P. G.; Ahluwalia, A.; Perretti, M. Association between kinin B1 receptor expression and leukocyte trafficking across mouse mesenteric postcapillary venules. The Journal of experimental medicine ,2000, 192, 367-380.
[55]Chihara, K.; Iwasaki, J.; Minamitani, N.; Kaji, H.; Matsukura, S.; Tamaki, N.; Matsumoto, S. Effect of vasoactive intestinal polypeptide on growth hormone secretion in perifused acromegalic pituitary adenoma tissues. The Journal of Clinical Endocrinology & Metabolism, 1982, 54, 773-779.
[56]Enjalbert, A.; Arancibia, S.; Ruberg, M.; Priam, M.; Bluet-Pajot, M.; Rotsztejn, W.; Kordon, C. Stimulation of in vitro prolactin release by vasoactive intestinal peptide. Neuroendocrinology ,1980, 31, 200-204.
[57]Frawley, L.; Neill, J. Stimulation of prolactin secretion in rhesus monkeys by vasoactive intestinal polypeptide. Neuroendocrinology ,1981, 33, 79-83.
[58]Vijayan, E.; Samson, W.; Said, S.; McCann, S. Vasoactive intestinal peptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone, and prolactin in conscious ovariectomized rats. Endocrinology ,1979, 104, 53-57.
[59]Li, N.; Zhou, L.; Zhang, B.; Dong, P.; Lin, W.; Wang, H.; Xu, R.; Ding, H. Recombinant human growth hormone increases albumin and prolongs survival in patients with chronic liver failure: a pilot open, randomized, and controlled clinical trial. Digestive and Liver Disease ,2008, 40, 554-559.
[60]Moller, N.; Vendelbo, M. H.; Kampmann, U.; Christensen, B.; Madsen, M.; Norrelund, H.; Jorgensen, J. O. Growth hormone and protein metabolism. Clinical Nutrition, 2009, 28, 597-603.
[61]Montgomery, R.; Conway, T. W.; Spector, A. A.; Chappell, D.: Biochemistry: a case-oriented approach; Mosby Incorporated, 1996; Vol. 10.
[62]Peng, M.-Y.; Zhao, X.-L.; Gao, X.; Lei, H.-Y. Renin angiotensin system in bone marrow of patients with aplastic anemia. Zhongguo shi yan xue ye xue za zhi ,2006, 14, 512-515.
[63]Ganong, W. F. Review of medical physiology. Dynamics of blood and lymph flow ,1995, 30, 525-541.
[64]Piron, M.; Loo, M.; Gothot, A.; Tassin, F.; Fillet, G.; Beguin, Y. Cessation of intensive treatment with recombinant human erythropoietin is followed by secondary anemia. Blood, The Journal of the American Society of Hematology, 2001, 97, 442-448.
[65]Abu Amra, E.; El Rehim, S. A. A.; Lashein, F. M.; Shoaeb, H. S. Effect of a bradykinin potentiating factor separated from honey bee venom on thyroid gland and testis in hypothyroid white rats. The Journal of Basic and Applied Zoology ,2022, 83, 1-10.
[66]Levant, A.; Levy, E.; Argaman, M.; Fleisher-Berkovich, S. Kinins and neuroinflammation: dual effect on prostaglandin synthesis. European journal of pharmacology ,2006, 546, 197-200.
[67]Kornberg, A.; Rachmilewitz, E. Aplastic anemia after prolonged ingestion of indomethacin. Acta Haematologica ,1982, 67, 136-138.
[68]Hoffbrand, A. V.; Steensma, D. P.: Hoffbrand's essential haematology; John Wiley & Sons, 2019.
[69]Allen, J. E.; Valeri, C. R. Prostaglandins in hematology. Archives of Internal Medicine, 1974, 133, 86-96.
[70]Ribardo, D. A.; Crowe, S. E.; Kuhl, K. R.; Peterson, J. W.; Chopra, A. K. Prostaglandin levels in stimulated macrophages are controlled by phospholipase A2-activating protein and by activation of phospholipase C and D. Journal of Biological Chemistry ,2001, 276, 5467-5475.
[71]Salzman, E.; Weisenberger, H. Role of cyclic AMP in platelet function. Advances in cyclic nucleotide research ,1972, 1, 231-247.
[72]Ferreira, S. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. British journal of pharmacology and chemotherapy ,1965, 24, 163.
[73]Festa, A.; D’Agostino Jr, R.; Tracy, R. P.; Haffner, S. M. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes ,2002, 51, 1131-1137.