Fish growth performance, body composition and water quality in integrated system producing Grass carp (Ctenopharyngodon idella) in the Eastern Desert

Document Type : Regular Articles

Authors

1 Department of Zoology, Faculty of Science, Sohag University, 8562 Sohag, Egypt.

2 Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), 71524Assiut, Egypt.

3 Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt.

Abstract

The present work was conducted to evaluate the influence of replacing fish meal with agriculture residues on the water quality parameters, biochemical composition, and growth performance of grass carp (Ctenopharyngodon idella). A total of 400 grass carp (Ctenopharyngodon idella) with an average body weight of 100.1±1 g were used in the present study. The fish were randomly divided into 4 groups (100 fish/pond). A basal control diet was formulated to fulfil the nutrient requirements of the fish that contained 25% crude protein (CP). The other 3 diets (treatment diets) were alfalfa diet, peanut leaves diet, and a mixture of alfalfa and peanut leaves diet. The fish were fed six days per week for 90 days at a daily feeding of 3% of the estimated fish-weight of the total biomass of the fish with twice daily feeding at 8.00 am and 4.00 pm.  Water quality parameters were found within a suitable range for fish production in the present experiment. Crude protein and moisture contents were the best when fish fed Alfalfa.  Ash content showed significant differences among the tested diets. In addition, the lowest retention of crude protein and moisture at fish fed Peanut leaves.
The obtained data showed that growth performance was significantly affected by using alternative diet (Alfalfa, Peanut leaves and Alfalfa + Peanut leaves). As well as fish reared on Alfalfa + Peanut leaves showed the highest final weight (225.3 g), weight gain (91.6 g). While fish reared on Alfalfa showed lowest final weight (202.6 g), weight gain (79.3 g). It is observed that the best of FCR was recorded in fish fed on Alfalfa + Peanut leaves (1.7) followed by fish fed on Peanut leaves (1.9), whilst the worst FCR (2.1) was obtained in fish fed Alfalfa compared to the control group (1.3). Fish reared fed commercial diet exhibited the lowest significant survival percent (88.2%). Significant elevation was observed in the survival rate of the fish fed on alternative diet (Peanut leaves 88.6, Alfalfa + Peanut leaves 83.6 and Alfalfa 99.1) compared to the control.  The result from this study indicates that alfalfa and groundnut leaves can be used as fish food in the diet of grass carp without adversely affecting growth efficiency and whole body composition.

Keywords

Main Subjects


[1] El-Sayed, B. M.; Hakim, Y.; El-Sayed, H. M.; Ali, H. A.; Effect of partial replacement of yellow corn by pomegranate peel with or without allzyme SSF on growth performance and health status of Oreochromis niloticusWorld, 2019, 6(2), 182-189.
[2] Kaushik, S. J.; Coves, D.; Dutto, G.; Blanc, D.; Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labraxAquaculture, 2004, 230(1-4), 391-404.
[3] Li, P.; Wang, X.; Hardy, R. W.; Gatlin III, D. M. Nutritional value of fisheries by-catch and by-product meals in the diet of red drum (Sciaenops ocellatus). Aquaculture, 2004, 236(1-4), 485-496.
[4] Fasakin, E. A.; Serwata, R. D.; Davies, S. J.; Comparative utilization of rendered animal derived products with or without composite mixture of soybean meal in hybrid tilapia (Oreochromis niloticus× Oreochromis mossambicus) diets. Aquaculture, 2005, 249(1-4), 329-338.
[5] El-Sayed, A. F. M.; Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture, 1999, 179(1-4), 149-168.
[6] Ogunji, J. O.; Alternative protein sources in diets for farmed tilapia. In Nutrition Abstracts and Reviews, 2004, Series B, Livestock Feeds and Feeding (Vol. 74, No. 9). CAB International.
[7] Ogino, C.; Cowey, C. B.; Chiou, J. Y.; Materials and Methods Protein Source The LPC, prepared from rye grass was a gift kindly sunvlied by Dr. AA Woodham, Rowett. Bulletin of the Japanese Society of Scientific Fisheries, 1978, 44(1), 49-52.
[8] Olvera-Novoa, M. A.; Campos, S. G.; Sabido, M. G.; Palacios, C. A. M.; The use of alfalfa leaf protein concentrates as a protein source in diets for tilapia (Oreochromis mossambicus). Aquaculture, 1990, 90(3-4), 291-302.
[9] Jackson, A. J.; Capper, B. S.; Matty, A. J.; Evaluation of some plant proteins in complete diets for the tilapia Sarotherodon mossambicusAquaculture, 1982, 27(2), 97-109.
[10] Santiago, C. B.; Aldaba, M. B.; Laron, M. A.; Reyes, O. S.; Reproductive performance and growth of Nile tilapia (Oreochromis niloticus) broodstock fed diets containing Leucaena leucocephala leaf meal. Aquaculture, 1988, 70(1-2), 53-61.
[11] Yousif M.O.; Alhadhrami A.G.; Pessarakli M.; Evaluation of dehydrated alfalfa and salt bush (Atriplex) leaves in diets for tilapia (Oreochromis aureus L.). Aquaculture, 1997, 126, 341– 347.
[12] Ali, A.; Al-Asgah, N. A.; Al-Ogaily, S. M.; Ali, S.; Effect of feeding different levels of alfalfa meal on the growth performance and body composition of Nile tilapia (Oreochromis niloticus) fingerlings. Asian fisheries science, 2003, 16(1/2), 59-68.
[13] Rivas, C.; Cepeda, C.; Dopazo, C. P.; Novoa, B.; Noya, M.; Barja, J. L.; Marine environment as reservoir of birnaviruses from poikilothermic animals. Aquaculture, 1993, 115(3-4), 183-194.
[14] Borgeson, T. L.; Racz, V. J.; Wilkie, D. C.; White, L. J.; Drew, M. D.; Effect of replacing fishmeal and oil with simple or complex mixtures of vegetable ingredients in diets fed to Nile tilapia (Oreochromis niloticus). Aquaculture nutrition, 2006, 12(2), 141-149.
[15] Vhanalakar, S.A.; Muley, D.V.; Evaluation of Medicago sativa leaf powder as supplementary feed for the growth of Fish, Cirrhinus mrigala. Bioscience Discovery,2015, 6(1-I) Special.
[16] FAO; Fisheries Topics. Fisheries and Aquaculture Resources: FAO, Roma, Italy, 2006.
[17] Ebeling, J.; Timmons, M.; Bisogni, J.; Engineering analysis of the stoichiometry of photoautotrophic , autotrophic , and heterotrophic removal of ammonia – nitrogen in aquaculture systems, Aquaculture, 2006, 257, pp. 346 – 358.
[18] Neill, W. H.; Bryan, J. D.; Responses of fish to temperature and oxygen, and response integration through metabolic scope. Aquaculture and water quality, 1991, 3, 30-57.
[19] Siddiqui, A. Q.; Al‐Hafedh, Y. S.; Al‐Harbi, A. H.; Ali, S. A.; Effects of stocking density and monosex culture of freshwater prawn Macrobrachium rosenbergii on growth and production in concrete tanks in Saudi Arabia. Journal of the World Aquaculture Society, 1997, 28(1), 106-112.
[20] APHA; Standard methods for the examination of water and wastewater. American Public Health Association, New York 1995.    
[21] Ayers, R. S.; Water quality for agriculture. FAO and UN, 1985.
[22] Lazur, A.; Growout pond and water quality management. JIFSAN (Joint Institute for Safety and applied Nutrition) Good Aquacultural Practices Program, University of Maryland, 2007.
[23] Das, B.; Fisheries and Fisheries Resources Management.  Bangla Academy, Dhaka, Bangladesh, 1997, 153-155p.
[24] Shaheen. A.A.; Seisay, M. and Nouala, S. (2013). An industry assessment of tilapia farming in Egypt. African Union – Inter-African Bureau for Animal Resources (AU-IBAR), Nairobi, Kenya.
[25]  Hossain, M.Y.; Effects of iso-phosphorus organic and inorganic fertilizer on water quality parameters and biological production. M.S. Thesis, Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2000, 74.
[26] Shaha, D. C.; Kundu, S. R.; Hasan, M. N.; Production of organic grass carp (Ctenopharyngodon idella) and GIFT tilapia (Oreochromis niloticus) using Napier grass, Pennisetum purpureum. Journal of Fisheries, 2015, 3(1), 233-238.
[27] Rahman, M.S.; Water quality management in Aquaculture. BRAC PROKASHANA 66, Mohakhali, Dhaka – 1212. Bangladesh. 1992, 75 pp.
[28] Swingle, H.S.; Relationships of pH of pond water to their suitability for fish culture. Proc. 9thPacific Sci. Congr., 1967, 10: 72-75.
[29] James, M. E.; Water Quality and Recalculating Aquaculture Systems. Aquaculture Systems Technologies, LLC. New Orleans, LA. 2000, 16- 17p, 28p.
[30]  Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A.; Small-scale aquaponic food production: integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Paper, 2014, (589): I.
[31] Sun, X.; Li, Q.; Zhu, M.; Liang, J.; Zheng, S.; Zhao, Y.; Ingestion of microplastic by natural groups in the northern South China Sea. Marine pollution bulletin, 2017, 115(1-2):217–224.
[32] Syafiqah, S.; Abentin, E.; Masran, T.; Amran, H.; Salleh, O.; Saleem, M.; Growth performance of tomato plant and Genetically Improved Farmed Tilapia in combined aquaponic systems. Asian Journal of Agricultural Research, 2015, 9(3): 95-103.
[33] Liedl, B.E.; Cummins, M.; Young, A.M.; Williams, L.; Chatfield. J.M.; Hydroponic lettuce production using liquid effluent from poultry waste bioremediation as a nutrient source. In VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition,2004, 659 (pp. 721-728).
[34] Rakocy, J.E.; Masser, M.P.; Losordo, T.M.; Recirculating aquaculturetank production systems: Aquaponics–integrating fish and plant culture,SRACPublication No. 454, 2006. Stoneville, MS: Southern Regional Agricultural Center.
[35] Stone, N. M.; Shelton, J.L.; Haggard, B.E.; Thomforde, H.K.; Interpretation of water analysis reports for fish culture. Stoneville, Mississippi: Southern Regional Aquaculture Center, 2013.
[36] Tucker, C.S.; Robinson, E.H.; Channel catfish farming handbook. New York. Van Nostrand Reinhold. 1985, 315pp.
[37] Meade, J.W.; Aquaculture management. New York. Van Nostr and Reinhold, 1989.
[38] Akalu, B.; The Main Factors Affecting Growth Performance of Oreochromis niloticus L. (1758) in Aquaculture System. Journal of Fisheries&Livestock Production, 2021, 9, 310.
[39] Coburn, J.; Wells, M.S.; Phelps, N.B.; Gaylord, T.G.; Samac, D.A.; Acceptance of a Protein Concentrate from Alfalfa (Medicago sativa) by Yellow Perch (Perca flavescens) Fed a Formulated Diet. Fishes, 2021, 6(2): 9.
[40] Chatzifotis, S.; Esteban, A. G.; Divanach, P.; Fishmeal replacement by alfalfa protein concentrate in sharp snout sea bream Diplodus puntazzo. Fisheries Science, 2006, 72(6), 1313-1315.
[41] Nekoubin, H.; Sudagar, M.; Effect of Different Types of Plants (Lemna Sp., Azolla filiculoides and Alfalfa) and Artificial Diet (With Two Protein Levels) on Growth Performance, Survival Rate, Biochemical Parameters and Body Composition of Grass Carp (Ctenopharyngodon idella). Journal of Aquaculture & Research Development, 2013, 4(2).
[42] Abd El-Hakim, A.; Hussein, M.; Abdel-Halim, H.; Effect of partial replacement of soybean meal protein with dehydrated alfalfa meal (Medicago sativa L.) on growth performance and feed utilization of male Nile tilapia (Oreochromis niloticus L.) fingerlings reared in tanks. Egyptian Journal of Aquatic Biology and Fisheries, 2009, 13(2), 35-52.
[43] Vhanalakar, S. A.; (2009). Growth response of Cirrhinamrigala and Cyprinus Carpio to plants formulated diets as protein source.Ph.D. thesis. SHIVAJI UNIVERSITY, KOLHAPUR ,INDIA.
[44] Jimoh O. A.; Oxidative stress indicators of rabbit breeds in Ibadan, Southwest Nigeria. Bull Natl Res Cen,2019, 43(62):1–7.
[45] Muhammed, S.J.; Al-Dubakel, A.Y.; Gowdet, A.I.; Effect of the Feeding on Artificial Diet or Alfalfa Plant on the Growth of Grass Carp Ctenopharyngodon idella (Val. 1844) Fingerlings Cultivated in the Earthen Ponds. Basrah Journal of Agricultural Sciences, 2022, 35(1): 50-60.
[46] Hama, J. R.; Strobel, B. W.; Pyrrolizidine alkaloids quantified in soil and water using UPLC-MS/MS. RSC advances, 2019, 9(52), 30350-30357.
[47] Sklan, D.; Prag, T.; Lupatsch, I.; Apparent digestibility coefficients of feed ingredients and their prediction in diets for tilapia Oreochromis niloticus× Oreochromis aureus (Teleostei, Cichlidae). Aquaculture Research, 2004, 35(4), 358-364.
[48] Jauncey,  K.;  Ross, B.; A  Guide to Tilapia Feeds and Feeding.  Institute of Aquaculture, University of Stirling, UK, 1982, 111 pp.
[49] Almazan, A.M.; Begum, F.; Nutrients and Antinutrients in Peanut Greens. Journal of Food Composition and Analysis, 1996, 9, 375± 383.
[50] Rodríguez, C.; Pérez, J. A.; Izquierdo, M. S.; Cejas, J. R.; Bolanos, A.; Lorenzo, A.; Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture, 1996, 147(1-2), 93-105.
[51] Bureau, D. P.; De La Nouee, J.; Jaruratjamorn, P.; Effect of dietary incorporation of crop residues on growth, mortality and feed conversion ratio of the African catfish, Clarias gariepinus (Burchell). Aquaculture Research, 1995, 26(5), 351-360.
[52] Garduño‐Lugo, M.; Olvera‐Novoa, M. Á.; Potential of the use of peanut (Arachis hypogaea) leaf meal as a partial replacement for fish meal in diets for Nile tilapia (Oreochromis niloticus L.). Aquaculture research, 2008, 39(12), 1299-1306.
[53] Liu, L.H.; Huang, E.; Hou, Y.Q.; Liu, J.; Zheng, S.X.; Zhou, Q.C.; Effects of replacement of fish meal with peanut meal in practical diets on growth and amino acid profile of Pacific White shrimp Litopenaeus vannamei (in Chinese with English Abstract). J. Dalian Fish. Univ., 2008, 23:370-375.
[54] Agbo, N. W.; Adjei-Boateng, D.; Jauncey, K.; The potential of groundnut (Arachis hypogaea L.) by-products as alternative protein sources in the diet of Nile tilapia (Oreochromis niloticus). Journal of Applied Aquaculture, 2011, 23(4), 367-378.
[55] Yıldırım Ö.; Acar Ü.; Türker A.; Sunar M. C.; Kesbiç O. S.; Effects of Replacing Fish Meal with Peanut Meal (Arachis hypogaea) on Growth, Feed Utilization and Body Composition of Mozambique Tilapia Fries (Oreochromis mossambicus). Pakistan J. Zool., 2014, 46(2), pp. 497-502.
[56] Duodu, C. P.; Adjei-Boateng, D.; Edziyie, R. E.; Agbo, N. W.; Owusu-Boateng, G.; Larsen, B. K.; Skov, P. V.; Processing techniques of selected oilseed by-products of potential use in animal feed: Effects on proximate nutrient composition, amino acid profile and antinutrients. Animal Nutrition, 2018, 4(4), 442-451.
[57] Shoba, S. P.; Candida, X.V.; Mary, T.A.; Rajeswari, R.; Rose, M.B.; Comparative analysis of biochemical composition of few freshwater and marine fishes, 2020.
[58] Arru, B.; Furesi,  R.; Gasco,  L.; Madau, F.A.; Pulina, P.; The  introduction of  insect meal into fish  diet:  the  first  economic  analysis  on European  sea  bass  farming.  Sustainability, 2019, 11(6): 1697.
[59] Stipanuk, M.H.; Caudill, M.A.; Biochemical, Physiological,  and  Molecular  Aspects  of Human  Nutrition-E-Book:  Elsevier  health sciences, 2018.
[60] Ahmad, I.; Ahmed, I.; Dar, N.A.; Effects of dietary leucine levels on growth performance, hematobiochemical parameters, liver profile, intestinal enzyme activities and target of rapamycin signalling pathway related gene expression in rainbow trout, Oncorhynchus mykiss fingerlings. Aquaculture Nutrition, 2021, 27(6): 1837-1852.