Exploring the effect of lithium-ion content on the electrochemical performance of commercial aluminum anodes in alkaline batteries

Document Type : Regular Articles

Authors

1 Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt

2 King Salman International University, Faculty of Science, Ras Sudr, Sinai, 46612 Egypt

Abstract

This research aims to find the best solution/material interface for improving the performance of alkaline Al-air batteries. It is found that the small addition of LiOH to a NaOH solution makes a great change in the electrochemical performance dramatically. In both 1M NaOH and 1M (90 percent NaOH + 10 percent LiOH) solutions, the corrosion behavior of aluminum and hence the Al-air battery performance were examined. The results reveal that the commercial aluminum electrode gains superior electrochemical characteristics under optimized conditions. It has a better electrochemical performance in the 1M (90 percent NaOH + 10 percent LiOH) solution. Moreover, higher anodic passivation and a lower corrosion rate than the pure 1M NaOH solution were observed. It is found that the corrosion products morphology of aluminum progresses from intergranular to uniform corrosion. The results of the scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS) are in good agreement with electrochemical performance.

Keywords

Main Subjects


[1] Yuxiang, Hu., Dan, Sun., Bin, Luo. & Lianzhou, Wang., Recent progress and future trends of aluminum batteries, Energy Technol., 7(Jan), 86-106, 2019.                         https: //doi.org/10.1002/ente.201800550.
[2] Ambroz, F., Macdonald, T.J., & Nann, T., Trends in aluminum-based intercalation batteries, Advanced Energy Materials, 7(Aug), 1602093, 2017.                         https:// doi.org/10.1002/aenm.201602093.
[3] Liu, X., Zhang, P., & Xue, J., The role of micro-naoscale AlSb precipitates in improving the discharge performance of Al-Sb alloy anodes for Al-air batteries, J. Power Sources, 425(June), 186-194, 2019.                https://doi.org/10.1016/j.jpowsour.2019.04.012.
[4] Sovizi, M.R., Afshari, M., Jafarzadeh, K., & Neshati, J., Electrochemical and microstructural investigations on an as-cast and solution-annealed Al-Mg-Sn-Ga alloy as anode material in sodium chloride solution, Ionics, 23(Nov), 3073-3084, 2017 https://doi.org/10.1007/s11581-017-2099-5.
[5] Ren, J., Ma, J., Zhang, J., Fu, C., & Sun, B., Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries, J. Alloys Compd., 808(Aug), 151708, 2019.
https://doi.org/10.1016/j.jallcom.2019.151708.
[6] Liang, R., Su, Y., Sui, X.-L., Gu, D.-M., Huang, G.-S., & Wang, Z.-B., Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery, J. Solid State Electrochem., 23(Jan), 53-62, 2019.
https://doi.org/10.1007/s10008-018-4093-x.
[7] Gao, J., Li, Y., Yan, Z., Liu, Q., Gao, Y., Chen, C., Ma, B., Song, Y., & Wang, E., Effects of solid-solute magnesium and stannate ion on the electrochemical characteristics of a high-performance aluminum anode/electrolyte system, J. Power Sources, 412(Feb), 63-70, 2019.
https://doi.org/10.1016/j.jpowsour.2018.11.019
[8] Du, X., Yan, Z., Wang, E., & Li, L., A high-performance air cathode with the hydrophobic pores distributed continuously and in gradient for zinc-air fuel cells, Energy Technol., 6(May), 1860-1864, 2018.
[9] Tanski, T., Snopi nski, P., Prusik, K., & Sroka, M., The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy, Mater. Char., 133(Nov), 185-195, 2017.
https://doi.org/10.1016/j.matchar.2017.09.039.
[10] Krol, M., Ta nski, T., Snopi nski, P., & Tomiczek, B., Structure and properties of aluminium-magnesium casting alloys after heat treatment, J. Therm. Anal. Calorim., 127(Sep), 299-308, 2016.
https://doi.org/10.1007/s10973-016-5845-4.
[11] Engler, O., Kuhnke, K., & Hasenclever, J., Development of intermetallic particles during solidification and homogenization of two AA 5xxx series Al-Mg alloys with different Mg contents, J. Alloys Compd., 728(Dec), 669-681, 2017.
https://doi.org/10.1016/j.jallcom.2017.09.060.
[12] Mokhtar, M., Zainal, M., Talib, M., Majlan, E. H., Tasirin, S. M., Ramli, W. M. F. W., Daud, & W. R. W., Sahari, J., Recent developments in materials for aluminum-air batteries: a review. J Ind Eng Chem., 32(Dec), 1–20, 2015.
[13] Goel, P., Dobhal, D., & Sharma, R.C., Aluminum-air batteries: a viability review, J. Energy Storage 28(April), 10128, 2020.
https://doi.org/10.1016/j.est.2020.101287.
[14] Ilyukhina, A. V., Kleymenov B. V., Zhuk, & A. Z., Development and study of aluminum-air electrochemical generator and its main components [J]., Journal of Power Sources, 342(Feb), 741-749, 2017.
https://doi.org/10.1016/j.jpowsour.2016.12.105.
[15] Ren, J., Ma, J., Zhang, J., Fu, C., & Sun, B., Electrochemical performance of pure Al, Al–Sn,Al–Mg and Al–Mg–Sn anodes for Al-air batteries [J]., Journal of Alloys and Compounds, 808(Aug), 151708, 2019.
https://doi.org/10.1016/j.jallcom.2019.151708.
[16] Li, L., Liu, H., Yan, Y., Zhu, H., Fang, H., Luo, X., Dai, Y., & Yu, K., Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys [J]., International Journal of Hydrogen Energy, 44(May), 12073-12084, 2019.
https://doi.org/10.1016/j.ijhydene.2019.03.081.
[17] Afshari, M., Abbasi, R., Sovizi, & M. R., Evaluation of nanometer-sized zirconium oxide incorporated Al-Mg-Ga-Sn alloy as anode for alkaline aluminum batteries [J]., Transactions of Nonferrous Metals Society of China, 30(Jan), 90-98, 2020.
https://doi.org/10.1016/s1003-6326(19)65182-4.
[18] Gao, J., Fan, H., Wang, E., Song, Y., & Sun, G., Exploring the effect of magnesium content on the electrochemical performance of aluminum anodes in alkaline batteries [J]., Electrochimica Acta, 353(Sep), 136497, 2020.
[19] Ren, J., Ma, J., Zhang, J., Fu, C., & Sun, B., Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries, J. Alloys Compd., 808(Nov), 151708, 2019.
https://doi.org/10.1016/j.jallcom.2019.151708.