Development of Novel Guanidine Iron (III) Complexes as a Powerful Catalyst for the Synthesis of Tetrazolo[1,5-*a*]**pyrimidine by Green Protocol**

Mahmoud Abd El Aleem Ali Ali El-Remaily^{1,*}, O. Elhady¹, Thomas Nady A. Eskander¹, Shaaban K Mohamed^{3,4}, Ahmed M. Abu- Dief^{1,2}

¹ Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524 Egypt

² Chemistry Department, College of Science, Taibah University, P.O. Box 344, Madinah, Saudi Arabia

³ Chemistry and Environmental Division, Manchester Metropolitan University, Manchester, United Kingdom

⁴ Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt

*E-mail: <u>mahmoud_ali@science.sohag.edu.eg</u>

2.1 | Reagents, Instrumentation and methods

Chemicals such as (starting material "Orthoamino thiophenol, cyanoguanidine, ethyl bromoacetate, acetyl acetone, Fe(NO₃)₃.9H₂O, aromatic aldehyde, 5-aminotetrazole and malononitrile" solvents "glacial acetic acid,ethanol, DMF, pipredine and reagents) were used acquired from Fluka, and Sigma-Aldrich, All melting points are uncorrected and were recorded on Melt-Temp II melting point apparatus. IR spectra were measured as KBr pellets on a Shimadzu DR-8001 spectrometer. ¹H NMR spectra were recorded on a Varian Gemini at 400 MHz using TMS as an internal reference and DMSO-d6 as a solvent. The Mass spectroscopy system was used to confirm the purity of the compounds as well as explore the characteristic fragmentation and the expected molecular weight. The elemental analysis was carried out on a Perkin-Elmer 240C Microanalyzer. All compounds were checked for their purity on TLC plates. pH meter (model LI-127) equipped with a CL-51B combined electrode was used for pH measurements and calibrated against standard buffers (pH 4.02 and 9.18) before measurements. Thermogravimetric analysis (TGA) was conducted using a Shimadzu 60H analyser under air at a heating rate of 10°C min⁻¹ from ambient temperature to 750°C at the Department of Chemistry, Faculty of Science, Thermal Analysis Unit, Cairo University, Egypt.

- 2.2 | Synthesis of ligands
- [1] IR, ¹H NMR and ¹³C NMR of L₁ ligand Spectrum

(Fig. 1S) IR (cm⁻¹) of L₁

(Fig.3S) ¹³C-NMR of L₁ ligand

[2] IR, ¹H NMR and ¹³C NMR of L_2 ligand Spectrum

(Fig.4S) IR (cm⁻¹) of L₂

(Fig.6S) ¹³C-NMR of L₂ ligand

[3] IR, ¹H NMR and ¹³C NMR of L_3 ligand Spectrum

(Fig.8S) ¹H NMR of L₃ ligand

(Fig.9S) ¹³C NMR of L₃ ligand

3.2 | IR of FeL₁, FeL₂ and FeL₃

(Fig.10S) IR spectrum of FeL1

(Fig.11S) IR spectrum of FeL₂

(Fig.12S) IR spectrum of FeL₃

3.4 | Mass Spectrometry

(Fig.S13) mass spectroscopy of FeL₁, FeL₂ and FeL₃

3.6 | Thermal Analysis (Table S1)

Complayor	Temperature °C	Fragment loss %		Weight loss %		-	Α	*		ΔS^*
Complexes				_		E^{-} (KJmol ⁻¹)	(S ⁻¹)	ΔH^{1} KJmol ⁻¹)	ΔG^{-1} (KJmol ⁻¹)	(Jmol ⁻¹ K ⁻
		Molecular formula	M. Wt.	Found	Calc.			/	(/	1)
FeL ₁	47-172	$2H_2O+NO_3\\$	98	14.7	(14.8)	31.29	0.004	30.39	61.06	281.71
	173-284	$N_7O_6H_7$	201	30.35	(30.36)			29.39	95.32	-287.87
	285-354	СН	13	1.97	(1.96)			28.64	121.37	-290.64
	354- 520	$C_8N_3S_2$	202	30.45	(30.50)			27.67	155.52	-293.23
	523-710	C_5H_8	68	10.2	(10.2)			26.17	208.87	-296.12
Residue	> 710	Fe+C ₂	80.5	12.2	(12.16)					
	43- 158	NO ₃	62	8.7	(8.8)	33.92	0.02	33.08	60.19	268.48
FeL ₂	159-207	$C_4H_6N_3O_3$	144	20.38	(20.4)			32.39	82.43	273.42
	208-299	$C_6H_4N_5O_5$	226	31.99	(32)			31.81	101.67	-276.11
	300- 543	$C_9H_5N_2S_2$	205	29	(28.99)			30.41	148.44	-280.35
Residue	>550	Fe+CH	69.5	9.83	(9.81)					
FeL ₃	53-214	H ₂ O	18	2.3	(2.3)	71.22	0.007	70.11	110.13	-298.70
	215-358	$C_{13}H_{16}N_9O_9S_2$	506	65.45	(65.5)			68.85	156.08	-305.01
	359- 560	$C_4H_6N_2$	82	10.6	(10.6)			67.41	209.21	-308.94
	563-741	C ₅ H ₂	62	8.03	(8.03)			65.80	269.45	-311.87
Residue	> 742	Fe+C ₄	104.5	13.6	(13.5)					

Scanned copies of ¹H-NMR and ¹³C-NMR spectra of the 7-amino-4,5-dihydro-tetrazolo[1,5-*a*]pyrimidine-6-carbonitrile derivatives

(Fig.S14) ¹HNMR and ¹³C 7-Amino-5-phenyl-4,5-dihydro-tetrazolo[1,5-a]pyrimidine-6-carbonitrile (4a)

(Fig.S15) ¹HNMR and ¹³C 7-amino-5-(4-chloro-phenyl)-4,5-dihydro-tetrazolo[1,5*a*]pyrimidine-6-carbonitrile (4b)

(Fig.S16) ¹HNMR and ¹³C-NMR of 7-amino-5-(4-bromo-phenyl)-4,5-dihydrotetrazolo[1,5-*a*]pyrimidine-6-carbonitrile (4c)

(Fig.S17) ¹HNMR and ¹³C-NMR of 7-amino-5-(4-methoxy-phenyl)-4,5-dihydro-tetrazolo[1,5-*a*]pyrimidine-6-carbonitrile (4d)

(Fig.S18) ¹HNMR and ¹³C-NMR of 7-amino-5-(3-methoxy-phenyl)-4,5-dihydro-tetrazolo[1,5-*a*]pyrimidine-6-carbonitrile (4e)

(Fig.S19) ¹HNMR and ¹³C-NMR 7-amino-5-(4-nitro-phenyl)-4,5-dihydro-tetrazolo[1,5*a*]pyrimidine-6-carbonitrile (4f)

(Fig.S20) ¹HNMR and ¹³C-NMR of 7-amino-5-(3-nitro-phenyl)-4,5-dihydro-tetrazolo[1,5*a*]pyrimidine-6-carbonitrile (4g)

(Fig.S21) ¹HNMR and ¹³CNMR of 7-amino-5-furan-2-yl-4,5-dihydro-tetrazolo[1,5-*a*]pyrimidine-6-carbonitrile (4h)

(Fig.S22) ¹HNMR and ¹³C-NMR of 7-amino-5-benzo[1,3]dioxol-5-yl-4,5-dihydro-tetrazolo[1,5-*a*]pyrimidine-6-carbonitrile (4i)

