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Abstract: A thorough comprehension of the single axiomatic characterization governing fuzzy rough approximation operators is 

crucial for delving deeper into the foundational principles of rough set theory. By analyzing these operators through an axiomatic 

lens, researchers can gain valuable insights into the structural and theoretical underpinnings of rough sets, enabling more rigorous 

exploration of their conceptual framework. This paper focuses on developing a single axiom to characterize each kind of M-level L-

rough approximation operators or (L, M)-fuzzy rough approximation operators (LM-Rapprox operators for short) produced by non-

increasing, unary, reflexive, serial, and transitive LM-fuzzy G neighborhood system (LM-fgns for short), as well as their 

compositions. Finally, we discuss the relationship between the LM-Rapprox operators and the LM-quasi fuzzy topologies. 

Specifically, it demonstrates that the lower and upper LM-Rapprox operators derived from LM-fgns correspond to a pair of LM-

quasi-fuzzy interior and LM-fuzzy closure operators, respectively. 
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1. Introduction 
The rough set theory, initially presented by Pawlak [1], is a 

modern method for information processing that has been widely 

applied in numerous practical areas such as data analysis and 

data mining [2, 3]. Also, Alsulami et al. [4] proposed a novel 

form of roughness that extends several earlier definitions, both 

in the fuzzy framework and in the classical setting. In general, 

the constructive approach and the axiomatic approach are the 

two basic techniques for developing rough set theory by 

studying the upper and lower approximation operators, which 

represent their fundamental concepts. In the constructive 

approach, the lower and upper approximation operators are 

constructed using primitive concepts on a universe of discourse, 

such as binary relations [5, 6], coverings [7, 8, 9], and 

generalized neighborhood systems [10, 11]. In contrast, in the 

axiomatic approach, the abstract upper and lower approximation 

operators are treated as primary notions, and a collection of 

axioms is used to characterize the approximation operators that 

are generated in the constructive approach. For axiomatic 

characterizations of approximation operators, see the literature 

[12, 13, 14]. 

Later, researchers primarily used constructive and 

axiomatic techniques to describe fuzzy approximation operators 

based on fuzzy coverings, fuzzy binary relations, and fuzzy 

generalized neighborhood systems in the context of fuzzy rough 

set theory [15, 16, 17, 18, 19]. 

A fascinating mathematical question is whether 

approximations to rough sets can be described by a single 

axiom. The characterization of rough approximation operators 

by means of single axioms is of crucial importance for the study 

of the theory of crisp and fuzzy rough sets. This idea has inspired 

many researchers to explore single axioms for classical and 

fuzzy rough approximation operators, as seen in the works of 

Bao et al. [20], Liu [21], Wang [22], Pang et al.  [23] and Wu et 

al. [24, 25]. 

In 2021, Zhao and Shi [26] used single axioms to 

characterize various types of L-fuzzy approximation operators 

corresponding to reflexive, serial, weakly transitive, and weakly 

unary L-fgns. In addition, Jin et al. [27] provided single 

axiomatic characterizations for another 11 types of LFVPRSs. 

Further, Chen et al [28] studied single axiomatic 

characterizations of L-valued rough sets. 

In 2022, El-Saady et al. [29] introduced a pair of many level 

lower and upper rough approximation operators derived from 

LM-fgns. They also demonstrated that these approximation 

operators encompass L-fgns-based approximation operators 

(Zhao et al. [14]; Zhao et al. [30]; Zhao et al. [26]) and M-level 

L-fuzzy relation-based approximation operators (Sostak et al. 

[31]) as special cases. 

Motivations, Innovative-ness, and Contributions 

• Previous investigations have shown that the study of 

L-fuzzy generalized neighborhood system (L-fgns) 

based approximation operators remains incomplete 

[29]. This gap highlights the need for deeper 

theoretical exploration, particularly regarding the 

axiomatic foundations of LM-Rapprox operators 

derived from LM-fgns. 

• One significant research challenge concerns the single-

axiom characterization of approximation operators, a 

theme that has been widely addressed across different 
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generalized rough set models applied to both crisp and 

fuzzy rough set theory. However, El-Saady et al. [29] 

did not provide a single-axiom characterization for his 

proposed lower and upper approximation operators. 

Thus, the first objective of this work is to present LM-

Rapprox operators within the LM-fgns framework 

using a single-axiom approach. 

• In addition, previous studies have examined the 

relationship between fuzzy approximation operators 

and fuzzy topological structures within fuzzy rough set 

theory [32, 33, 34, 26]. Building on this line of 

research, the second aim of this article is to explore the 

interplay between LM-quasi-fuzzy topologies and LM-

Rapprox operators. 

• Beyond theoretical significance, lower and upper 

approximation operators have been successfully 

applied in several real-world scenarios, including 

multi-criteria decision-making techniques (SAW, 

TOPSIS, PROMETHEE) for evaluating auction 

systems in procurement processes [35], decision 

support systems [36, 37], and the assessment of online 

health information quality [38].  

 The following is a breakdown of the paper’s structure. In 

Section 2, we review several fundamental concepts and notes. 

Section 3 shows that the lower and upper LM-Rapprox operators 

generated by reflexive, non-increasing, serial, transitive, and 

unary LM-fgns, can be described by single axioms, also we 

discuss the relationship between LM-quasi-fuzzy topologies are 

discussed and LM-Rapprox operators based on LM-fgns. The 

final section summarizes our findings, offering thoughtful 

conclusions based on the study conducted. 

2. Preliminaries 
 A structure L = (L, ≤), which is a complete lattice and is 

endowed with a binary operation ⊗:L × L → L without 

imposing any further restrictions, is referred to as a semi-

quantale (abbreviated as 𝑠-quantale) L = (L, ≤,⊗)  [39]. As an 

agreement, we indicate the meet, join, bottom and top in L =
(L, ≤) by ∧,∨, ⊥L   𝑎𝑛𝑑  ⊤L , respectively. 

Definition 1. A 𝑠-quantale L = (L, ≤,⊗) is called   

    • A unital [39] if L has an identity element 𝑒 for ⊗. If the 

identity is the top element of L, then a unital 𝑠-quantale is said 

to be a strictly two-sided 𝑠-quantale ( 𝑠𝑡-𝑠-quantale for short).  

    • A commutative [39] if ⊗ is commutative.  

    • A quantale [40] if ⊗ is associative and satisfies: 

 𝜂 ⊗ (⋁ 𝜁𝑗𝑗∈𝐽 ) = ⋁(𝜂 ⊗ 𝜁𝑗) 
𝑗∈𝐽

and  

(⋁ 𝜁𝑗
𝑗∈𝐽

)⊗ 𝜂 = ⋁
𝑗∈𝐽
(𝜁𝑗 ⊗ 𝜂) ∀ 𝜂 ∈ L, {𝜁𝑗: 𝑗 ∈ 𝐽} ⊆ L. 

  

  In this article, we considered that L = (L, ≤,⊗) is a 𝑠𝑡-𝑠-
quantale and (M,≤,⊙) be a 𝑠-quantale. 

Consider L is a 𝑠-quantale and X be a nonempty set. We refer 

to a mapping U: X → L as an L-fuzzy subset (or L-subset) of X. 

Also, we indicate the family of all L-fuzzy subsets on X by LX. 

Extensions of the algebraic structures of lattice-theoretic are 

possible, pointwise, from the 𝑠-quantale L to LX, for all 𝑥 ∈ X:  

 (U ⊗ V)(𝑥) = U(𝑥) ⊗ V(𝑥).  

(⋁ U𝑗𝑗∈𝐽 )(𝑥) = ⋁ U𝑗𝑗∈𝐽 (𝑥). 

 

  The powerset LX is a 𝑠-quantale with respect to ⊗ and arbitrary 

sups. The elements ⊥ and ⊤ represent the smallest and largest 

elements in LX, respectively. 

It is known that every commutative quantale L is induced by 

its ⊗ distributes over arbitrary joins. The function 𝜂 ⊗
(−): L → L has the right adjoint 𝜂 → (−): L → L introduced by 

𝜂 → 𝜁 = ⋁{𝜉: 𝜂 ⊗ 𝜉 ≤ 𝜁}. The residual →:L × L → L on L 

holding the axiom below  

 𝜂 ⊗ 𝜁 ≤ 𝜉 ⇔ 𝜂 ≤ 𝜁 → 𝜉.  

The residual →: L × L → L on L can be expanded pointwisely 

to the powerset LX as →: LX × LX → LX, where  
(U → V)(𝑥) = U(𝑥) → V(𝑥). 

Assume that L is a commutative quantale. It is considered to 

follow the double negation principal [20] if  

 (𝜂 →⊥) →⊥= 𝜂, for all 𝜂 ∈ L  

For naivety, we use ¬𝜂 to denote 𝜂 →⊥. Also, for any 𝜂, 𝜁 ∈ L, 

we say 𝜂 ⊕ 𝜁 = ¬(¬𝜂 ⊗ ¬𝜁). 
Definition 2. Presume U, V are L-fuzzy sets in X.  

(1) In [41], the subsethood degree 𝑆: LX × LX → L, of U, V say 

𝑆(U, V) is introduced by  

𝑆(U, V) = ∧
𝑥∈X

(U(𝑥) → V(𝑥)) 

(2) In [42], the degree of intersection of U, V denoted by 

 𝑇(U, V) =∨𝑥∈X (U(𝑥) ⊗ V(𝑥)). 

Lemma 1. [41, 43,44] If L = (L, ≤,⊗) is a 𝑠𝑡-𝑠-quantale, then 

U ≤ V implies 𝑆(U, V) = ⊤, ∀ U, V ∈ LX .  The following 

definitions discuss a pair of many level upper and lower rough 

approximation operators derived from LM-fgns. These 

approximation operators also encompass L-fuzzy generalized 

neighborhood system-based approximation operators [26, 30, 

45] and M-level L-fuzzy relation-based approximation operators 

[31] as special cases.   

Definition 3. [29] Presume X is the universe of discourse. An 

LM-fgns operator on X is a mapping N: X → LL
X×M, where for 

each 𝑥 ∈ X, N(𝑥) = N𝑥 : L
X ×M → L is non empty, i.e., 

∨
U∈LX

N𝑥(U, Θ) = ⊤L for all Θ ∈ M. Additionally, N𝑥 is referred 

to as an LM-fgns of 𝑥, and N𝑥(U, Θ) represents the degree of that 

U ∈ LX is considered a neighborhood of 𝑥. 

Example 1. [29] Let X = {𝑥} and L = M = [0,1]. Define an LM-

fgns operator 𝑁: X → LL
X×M by  

N𝑥(U, Θ) =

{
 
 

 
 
1              𝑓𝑜𝑟   U = 1X;
2Θ

1 + 2Θ
  𝑓𝑜𝑟   U = 𝑥1

2

;

3Θ

2 + 3Θ
   𝑓𝑜𝑟   U = 𝑥1

3

;

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

It’s simple to observe that N: X → LL
X×M is an LM-fgns operator.   

Remark 1. For all Θ ∈ M, we observe that every LM-fgns 

operator N: X → LL
X×M induces an L-fgns operator NΘ: X → LL

X
  

[30, 45] given by NΘ = (N𝑥
Θ)𝑥∈X where N𝑥

Θ: LX → L, N𝑥
Θ(U) =

N𝑥(U, Θ),   ∀ U ∈ L
X.    

Example 2. [29] For Θ ∈ {
2

3
,
1

2
} and with the LM-fgns operator 

N: X → LL
X×M given in Example 1, then we have the next three 

L-fgns operators: 
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N
(
2

3
)(𝑥)(U) = N𝑥 (U,

2

3
) =

{
 
 

 
 
1   𝑓𝑜𝑟   U = 1X;
4

7
    𝑓𝑜𝑟   U = 𝑥1

2

;

1

2
  𝑓𝑜𝑟   U = 𝑥1

3

;

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

N
(
1

2
)(𝑥)(U) = N𝑥 (U,

1

2
) =

{
 
 

 
 
1   𝑓𝑜𝑟   U = 1X;
1

2
    𝑓𝑜𝑟   U = 𝑥1

2

;

3

7
  𝑓𝑜𝑟   U = 𝑥1

3

;

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Definition 4.  [29] Let N: X → LL
X×M be an LM-fgns operator. 

Then the lower LM-Rapprox operator N: LX ×M → LX and the 

upper LM-Rapprox operator N: LX ×M → LX are defined as 

follows: for each U ∈ LX, ∀ Θ ∈ M, and ∀ 𝑥 ∈ X, 

N(U, Θ)(𝑥) = ∨
𝐾∈LX

(N𝑥(𝐾, Θ) ⊗ 𝑆(𝐾, U)), 

N(U, Θ)(𝑥) = ∧
𝐾∈LX

(N𝑥(𝐾, Θ) → 𝑇(𝐾, U)). 

Example 3. [29] Let X = {𝑥} and L = M = [0,1] with the 

adjoint pair (∗,→) on [0,1] define as follows: ∀ 𝜂, 𝜁 ∈ L,  

 𝜂 ∗ 𝜁 = max{0, 𝜂 + 𝜁 − 1} ,   𝜂 → 𝜁 = min{1,1 − 𝜂 + 𝜁}.  

 For an LM-fgns operator N: X → 𝐿L
X×M, given in  Example 1, 

the lower LM-Rapprox operator N given by: For U = 𝑥1
3

 

N(𝑥1
3

, Θ) (𝑥) = ∨
𝐾∈LX

(N𝑥(𝐾, Θ) ∗ 𝑆 (𝐾, 𝑥1
3

))

= (N𝑥(1X, Θ) ∗ 𝑆 (1X, 𝑥1
3

))

 ∨ (N𝑥 (𝑥1
2

, Θ) ∗ 𝑆 (𝑥1
2

, 𝑥1
3

)) ∨ (N𝑥 (𝑥1
3

, Θ) ∗ 𝑆 (𝑥1
3

, 𝑥1
3

))

= (1 ∗ (1 →
1

3
)) ∨ (

2Θ

1+2Θ
∗ (

1

2
→

1

3
))

    ∨ (
3Θ

2+3Θ
∗ (

1

3
→

1

3
))

= (1 ∗
1

3
) ∨ (

2Θ

1+2Θ
∗
5

6
) ∨ (

3Θ

2+3Θ
∗ 1)

=
1

3
∨ (

2Θ

1+2Θ
−
1

6
) ∨ (

3Θ

2+3Θ
)

=
1

3
∨ (

10Θ−1

6+12Θ
) ∨ (

3Θ

2+3Θ
)

  

Again, the upper LM-Rapprox operator N given by: For U = 𝑥2
3

 

N(𝑥2
3

, Θ) (𝑥) = ∧
𝐾∈LX

(N𝑥(𝐾, Θ) → 𝑇 (𝐾, 𝑥2
3

)) 

= (N𝑥(1X, Θ) → 𝑇 (1X, 𝑥2
3

)) ∧ (N𝑥 (𝑥1
2

, Θ) → 𝑇 (𝑥1
2

, 𝑥2
3

)) ∧ 

 (N𝑥 (𝑥1
3

, Θ) → 𝑇 (𝑥1
3

, 𝑥2
3

)) 

        = (1 → (1 ∗
2

3
)) ∧ (

2Θ

1 + 2Θ
→ (

1

2
∗
2

3
)) ∧ (

3Θ

2 + 3Θ
→ (

1

3
∗
2

3
)) 

        = (1 →
2

3
) ∧ (

2Θ

1 + 2Θ
→
1

6
) ∧ (

3Θ

2 + 3Θ
→ 0) 

        =
2

3
∧

7 + 2Θ

6(1 + 2Θ)
∧

2

2 + 3Θ
 

Remark 2. [29] For all Θ ∈ MWe observe that every upper 

(resp., lower) LM-Rapprox operators N (resp.,  N): LX ×M →

LX induces upper (resp., lower) approximation operators 

 N
Θ
(resp.,  NΘ): LX → LX [30, 45] given by  N

Θ
(U)(𝑥) =

N(U, Θ)(𝑥)(resp., NΘ(U)(𝑥) = N(U, Θ)(𝑥)) ∀ U ∈ LX, ∀ 𝑥 ∈ X.    

 Example 4. [29] For Θ ∈ {
2

3
,
1

2
}, the lower LM-Rapprox 

operator N, and the upper LM-Rapprox operator N, given in  

Example 2, determines:   

(1) The two related lower approximation operators: Let A =
𝑥1
3

 , then 

  (i) N
(
2

3
)
(𝑥1

3

) (𝑥) = N (𝑥1
3

,
2

3
) (𝑥) =

1

2
.  

  (ii) N
(
1

2
)
(𝑥1

3

) (𝑥) = N (𝑥1
3

,
1

2
) (𝑥) =

3

7
.  

     (2) The two related upper approximation operators: Let 

     A = 𝑥2
3

 , then 

(i) N
(
2

3
)
(𝑥2

3

)(𝑥) = N(𝑥2
3

,
2

3
)(𝑥) =

1

2
. 

 (ii) N
(
1

2
)
(𝑥2

3

)(𝑥) = N(𝑥2
3

,
1

2
)(𝑥) =

4

7
.   

For any 𝑥 ∈ X,   U, V ∈ LX and Θ, Ξ ∈ M, an LM-fgns operator 

N: X → LL
X×M is called  [29]:  

(NI) non-increasing, if Θ ≤ Ξ ⇒ N𝑥(U, Ξ) ≤ N𝑥(U, Θ).  
(SE) serial, if N𝑥(U, Θ) ≤ ∨

𝑦∈X
U(𝑦).  

(RE) reflexive, if N𝑥(U, Θ) ≤ U(𝑥).  
 (UN) unary, if  

 N𝑥(U, Θ) ⊗ N𝑥(V, Ξ) ≤ ∨
𝐾∈LX

(N𝑥(𝐾, Θ⊙ Ξ)⊗ 𝑆(𝐾, U⊗ V)). 

 (TR) transitive, if  

 N𝑥(U, Θ) ≤ ∨
V∈LX

{N𝑥(V, Θ) ⊗ ∧
𝑦∈X

(V(𝑦) → ∨
V𝑦∈L

X
(N𝑦(V𝑦 , Θ) ⊗

𝑆(V𝑦 , U)))}.  

The following theorem discusses the properties of the M-level 

operator of the lower L-fuzzy rough approximation.   Theorem 

1.[29] Presume N: X → LL
X×M is an LM-fgns operator on X. Then 

the lower LM-Rapprox operator N satisfies the next axioms: ∀ 

U, V ∈ LX, Θ ∈ M,   

(1) If L is an 𝑠𝑡-𝑠-quantale, then N(⊤, Θ) = ⊤;  

(2) 𝑆(U, V) ≤ 𝑆(N(U, Θ), N(V, Θ)). 

 The next theorem presents the properties of the M-level 

operator of upper L-fuzzy rough approximation.   

Theorem 2. [29] Presume N: X → LL
X×M is an LM-fgns operator 

on X. Then the upper LM-Rapprox operator N satisfies the next 

axioms: ∀ U, V ∈ LX, Θ ∈ M:   

(1) N(⊥, Θ) =⊥;  

  (2)  𝑆(U, V) ≤ 𝑆(N(U, Θ), N(V, Θ)).  
  Now, the following theorem discusses some special LM-fgns 

and the related LM-Rapprox operators.  

Theorem 3. [29] Presume N: X → LL
X×M is an LM-fgns operator 

on X, for each U, V ∈ LX and Θ, Ξ ∈ M.   

(NI) If N is a non-increasing, then  

Ξ ≤ Θ ⇒ N(U, Θ) ≤ N(U, Ξ) and N(U, Ξ) ≤ N(U, Θ).  

(SE) (i) N is serial iff N(⊤, Θ) = ⊤ and (L,≤,⊗) is a 𝑠𝑡-𝑠-
quantale.  

(ii) If N is serial, then N(⊥, Θ) =⊥ and the reverse conclusion 

held if L satisfy the double negation law.  

(RE) Let N be reflexive, then   

(i) N(U, Θ) ≤ U. The reverse is true if (L, ≤,⊗) is a 𝑠𝑡-𝑠-
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quantale.  

(𝑖𝑖) N(U, Θ) ≥ U. The reverse is true if L satisfies the double 

negation law.  

(TR) Let N be transitive, then   

(𝑖) N(U, Θ) ≤ N(N(U, Θ), Θ). The reverse is true if L is a 𝑠𝑡-𝑠-
quantale.  

(𝑖𝑖)N is transitive iff N(U, Θ) ≥ N(N(U, Θ), Θ) and L satisfy 

the double negation law.  

(UN) Let N be unary, then   

(𝑖)N(U⊗ V, Θ⊙ Ξ) ≥ N(U, Θ) ⊗ N(V, Ξ). The reverse is true 

if L is a 𝑠𝑡-𝑠-quantale.  

(ii) N(U⊕ V, Θ⊙ Ξ) ≤ N(U, Θ) ⊕ N(V, Ξ), the reverse is true 

if L is a 𝑠𝑡-𝑠-quantale, and that with L satisfy the double 

negation law.  

3 Single axiomatic characterizations on lower 

and upper 𝐋𝐌-Rapprox operators 
 Here we introduce a description of upper and lower LM-

Rapprox operators derived from LM-fgns by single axiom.  

Theorem 4. Presume ℎ: LX ×M → LX is an operator, then there 

exists an LM-fgns operator N: X → LL
X×M such that: for each 

U, V ∈ LX and Θ ∈ M.   
(1) ℎ = N iff ℎ has the following property:   

(𝑆𝑁𝐺𝐿1) 𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤,Θ)(𝑥).  

(2) ℎ = N iff ℎ has the following property:   
(𝑆𝑁𝑈𝐿1)  𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥).  

Proof.  (1) Suppose that N: X → LL
X×M is an LM-fgns operator 

on X and ℎ = N. Then by  Theorem 1 we have that ℎ satisfies 

(1) and (2). Next, we verify the condition (𝑆𝑁𝐺𝐿1). For any 

U, V ∈ LX and Θ ∈ M, we have  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ))

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥).

 

Thus, ℎ satisfies 𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ). 

Conversely, suppose that ℎ: LX ×M → LX is an operator 

satisfying (𝑆𝑁𝐺𝐿1). For each Θ ∈ M, we put U = V, then we 

find  

 ⊤ ≤ ⊤⊗ ℎ(⊤,Θ)(𝑥)  

therefore ⊤ ≤ ℎ(⊤, Θ)(𝑥) for each 𝑥 ∈ X. Hence, ℎ(⊤, Θ) = ⊤. 

Further, it follows from (𝑆𝑁𝐺𝐿1), we have 𝑆(U, V) ≤
𝑆(ℎ(U, Θ), ℎ(V, Θ)). Then by Theorem 6.32 in  [46], we know 

there exists an LM-fgns operator on X such that ℎ = N. 

(2) This is similar to proving (1) by utilizing dual properties.   

3.1 Characterizing lower and upper 𝐋𝐌-Rapprox 

operators generated by each kind of 𝐋𝐌-fgns with 

single axioms 
In this subsection, we present single axiomatic characterizations 

of lower and upper LM-Rapprox operators w.r.t non-increasing, 

unary, reflexive, serial, and transitive LM-fgns, respectively. 

Theorem 5.  Let ℎ: LX ×M → LX be an operator, then there 

exists a non-increasing LM-fgns operator N: X → LL
X×M such 

that: for any U, V ∈ LX and Θ, Ξ ∈ M   

(1) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝐿𝑁𝐼):  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥) 

whenever Ξ ≤ Θ.  

(2)ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝑈𝑁𝐼):  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ ℎ(U, Ξ), ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥)  

whenever Ξ ≤ Θ. 

Proof.  (1) Suppose that N: X → LL
X×M is a non-increasing LM-

fgns operator on X and ℎ = N. Then it follows from  Theorem 

3 (𝑁𝐼), that ℎ(V, Θ) ≤ ℎ(V, Ξ) whenever Ξ ≤ Θ. Then through  

Theorem 4, for each U, V ∈ LX, Θ, Ξ ∈ M, and 𝑥 ∈ X, we get  

 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥).
 

Conversely, assume that ℎ: LX ×M → LX is an operator 

satisfying (𝑆𝑁𝐺𝐿𝑁𝐼). By taking U = V, for each U, V ∈ LX, and 

Θ, Ξ ∈ M with Ξ ≤ Θ, we get that  

 ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥)  
 This means that 

        ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ))

⇔ ℎ(V, Θ) ≤ ℎ(V, Θ) ∧ ℎ(V, Ξ)

⇔ ℎ(V, Θ) = ℎ(V, Θ) ∧ ℎ(V, Ξ)

⇔ ℎ(V, Θ) ≤ ℎ(V, Ξ).

 

Then it follows from (𝑆𝑁𝐺𝐿𝑁𝐼) that  

 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥).
 

So through  Theorem 4, there exists an LM-fgns operator on X 

such that ℎ = N. Further, we have  

 N(V, Θ) = ℎ(V, Θ) ≤ ℎ(V, Ξ) = N(V, Ξ) whenever Ξ ≤ Θ  

This implies that N is non-increasing.  

(2) This is similar to proving (1) by utilizing dual properties. 

Corollary 1.Let ℎ: LX ×M → LX be an operator, then there exists 

a non-increasing LM-fgns operator N: X → LL
X×M such that: for 

any U, V,W ∈ LX, and Θ, Ξ ∈ M.   

(1) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝐿𝐿𝑁𝐼):  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(W, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥) 

    whenever with V ≤ W, and Ξ ≤ Θ.  

(2) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝑈𝑈𝑁𝐼):  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ ℎ(W, Ξ), ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥) 

    whenever with W ≤ U, and Ξ ≤ Θ. 

   Theorem 6. Let ℎ: LX ×M → LX be an operator and L satisfying 

the double negation law, then there exists a serial LM-fgns 

operator N: X → LL
X×M such that: for each U, V ∈ LX and Θ ∈ M.   

(1)ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝐿𝑆𝐸) as follows 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥). 

(2) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝑈𝑆𝐸) as follows 

 𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗ ℎ(⊤, Θ)(𝑥).     

Proof.  (1) Suppose that N: X → LL
X×M is a serial LM-fgns 

operator on X and ℎ = N. Then by  Theorem 3 (𝑆𝐸), we have 

ℎ(⊥, Θ) =⊥, i.e., ¬ℎ(⊥, Θ) = ⊤. Then by  Theorem 4, for each 

U, V ∈ LX, Θ ∈ M, and 𝑥 ∈ X, we have 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥).

 

Hence, ℎ satisfy: 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗

¬ℎ(⊥, Θ)(𝑥). 

Conversely, assume that ℎ: LX ×M → LX is an operator 

satisfying (𝑆𝑁𝐺𝐿𝑆𝐸). For each Θ ∈ M, we put U = V, then we 

have  

 ⊤ ≤ ⊤⊗ ℎ(⊤,Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥)  
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This means that ⊤ ≤ ¬ℎ(⊥, Θ)(𝑥) for each 𝑥 ∈ X, and therefore 

¬ℎ(⊥, Θ) = ⊤, i.e., ℎ(⊥, Θ) =⊥. From (𝑆𝑁𝐺𝐿𝑆𝐸) it follows that  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥).

 

Then there exists an LM-fgns operator N on X with ℎ = N by  

Theorem 4. Moreover, we have  

 N(⊥, Θ) = ℎ(⊥, Θ) =⊥.  

This lead to N is a serial.  

(2) This is similar to proving (1) by utilizing dual properties. 

Theorem 7.Presume ℎ: LX ×M → LX is an operator, then there 

exists a reflexive LM-fgns operator N: X → LL
X×M such that: for 

each U, V ∈ LX, and Θ ∈ M.   

  (1) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝐿𝑅𝐸) i.e., 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥).  

  (2) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝑈𝑅𝐸) i.e., 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ U, ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥). 

Proof.  (1) Suppose that N: X → LL
X×M is a reflexive LM-fgns 

operator on X and ℎ = N. Then it follows from  Theorem 3 

(𝑅𝐸), that ℎ(V, Θ) ≤ V. Then through  Theorem 4, for each 

U, V ∈ LX, Θ ∈ M, and 𝑥 ∈ X, we get  

 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤,Θ)(𝑥).
 

Conversely, suppose that ℎ: LX ×M → LX is an operator 

satisfying (𝑆𝑁𝐺𝐿𝑅𝐸). By taking U = V, for each Θ ∈ M, we get 

that  

 ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥)  
This means that  

        ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ V)

⇔ ℎ(V, Θ) ≤ ℎ(V, Θ) ∧ V

⇔ ℎ(V, Θ) = ℎ(V, Θ) ∧ V

⇔ ℎ(V, Θ) ≤ V.

 

Then it follows from (𝑆𝑁𝐺𝐿𝑅𝐸) that  

 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥).
 

So through  Theorem 4, there exists an LM-fgns operator on X 

such that ℎ = N. Further,we have  

 N(V, Θ) = ℎ(V, Θ) ≤ V.  

This implies that N is reflexive.  

(2) This is similar to proving (1) by utilizing dual properties. 

Theorem 8. Presume ℎ: LX ×M → LX is an operator, then there 

exists an unary LM-fgns operator N: X → LL
X×M such that: for 

each U, V, C, D ∈ LX, and Θ, Ξ ∈ M.   

(1) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝐿𝑈𝑁) i.e., 𝑆(U, V) ≤

𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗

ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)),  

 (2) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝑈𝑈𝑁) i.e., 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗ 𝑆(ℎ(C⊕

D, Θ⊙ Ξ), ℎ(C, Θ) ⊕ ℎ(D, Ξ)).  

Proof.  (1) Suppose that N: X → LL
X×M is an unary LM-fgns 

operator on X and ℎ = N. Then, we have from  Theorem 3 

(𝑈𝑁), that ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C⊗ D, Θ⊙ Ξ), i.e., 

𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)) = ⊤. 

 Then through  Theorem 4, it follows, for each U, V, C, D ∈
LX, Θ, Ξ ∈ M, and 𝑥 ∈ X, that: 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

    ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)).

 

Conversely, assume that ℎ: LX ×M → LX is an operator 

satisfying (𝑆𝑁𝐺𝐿𝑈𝑁). By taking U = V, for each Θ ∈ M, we get 

that  

⊤ ≤ ⊤⊗ ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙

Ξ))  
Therefore 

⊤ ≤ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)) 
⇔ ⊤ = 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)) 

         ⇔ ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C ⊗ D, Θ⊙ Ξ). 
Then it follows from (𝑆𝑁𝐺𝐿𝑈𝑁) that  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗

        𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ))

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥).

 

Then from  Theorem 4, there exists an LM-fgns operator on X 

such that ℎ = N. Furthermore, we get  

 N(C⊗ D, Θ⊙ Ξ) = ℎ(C⊗ D, Θ⊙ Ξ) ≥ ℎ(C, Θ) ⊗

ℎ(D, Ξ) = N(C, Θ) ⊗ N(D, Ξ),  

 which means that N is unary.  

(2) This is similar to proving (1) by utilizing dual properties. 

Theorem 9. Presume ℎ: LX ×M → LX is an operator, then there 

exists a transitive LM-fgns operator N: X → LL
X×M such that: for 

each U, V ∈ LX and Θ ∈ M.   

(1) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝐿𝑇𝑅) i.e., 𝑆(U, V) ≤

𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) 
⊗ℎ(⊤, Θ)(𝑥),  

  (2) ℎ = N iff the operator ℎ satisfies (𝑆𝑁𝐺𝑈𝑇𝑅) i.e., 𝑆(U, V) ≤
𝑆(ℎ(U, Θ) ∨ ℎ(ℎ(U, Θ), Θ), ℎ(V, Θ)) 

     ⊗ ¬ℎ(⊥, Θ)(𝑥).  

Proof.  (1) Suppose that N: X → LL
X×M is a transitive LM-fgns 

operator on X and ℎ = N. then it follows from  Theorem 3 (𝑇𝑅), 

that ℎ(V, Θ) ≤ ℎ(ℎ(V, Θ), Θ). By  Theorem 4, it follows, for 

each U, V ∈ LX, Θ ∈ M, and 𝑥 ∈ X, that  
𝑆(𝑈, 𝑉) ≤ 𝑆(ℎ(𝑈, 𝛩), ℎ(𝑉, 𝛩)) ⊗ ℎ(⊤, 𝛩)(𝑥)

= 𝑆(ℎ(𝑈, 𝛩), ℎ(𝑉, 𝛩) ∧ ℎ(ℎ(𝑉, 𝛩), 𝛩)) ⊗ ℎ(⊤, 𝛩)(𝑥).
 

Conversely, assume that ℎ: LX ×M → LX is an operator 

satisfying (𝑆𝑁𝐺𝐿𝑇𝑅). For each Θ ∈ M, if we put U = V we have 

⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ ℎ(⊤, Θ)(𝑥). 
Therefore  

        ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ))

⇔ ℎ(V, Θ) ≤ ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)

⇔ ℎ(V, Θ) = ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)

⇔ ℎ(V, Θ) ≤ ℎ(ℎ(V, Θ), Θ).

 

Then it follows from (𝑆𝑁𝐺𝐿𝑇𝑅) that  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥).
 

Then from  Theorem 4, there exists an LM-fgns operator on X 

such that ℎ = N. Further, there is  

 N(V, Θ) = ℎ(V, Θ) ≤ ℎ(ℎ(V, Θ), Θ) = N(N(V, Θ), Θ),  

 which means that N is a transitive.  

(2) This is similar to proving (1) by utilizing dual properties. 
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3.2 Characterizing lower and upper 𝐋𝐌-Rapprox 

operators induced by compositions of 𝐋𝐌-fgns 
 

   Now, we will discuss single axiomatic characterizations of 

upper and lower LM-Rapprox operators w.r.t any compositions 

of non-increasing, unary, reflexive, serial, and transitive LM-

fgns. 

Theorem 10. Presume L is satisfied the double negation law and 

ℎ: LX ×M → LX is an operator. Then there exists a non-

increasing and reflexive LM-fgns operator N on X such that: for 

each U, V ∈ LX, and Θ, Ξ ∈ M.   
(1)N = ℎ iff the operator ℎ satisfies (𝑁𝑅𝐺𝐿) i.e.,  

 𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥) 
whenever Ξ ≤ Θ.  

(2) N = ℎ iff the operator ℎ satisfies (𝑁𝑅𝐺𝑈) i.e.,  𝑆(U, V) ≤
𝑆(ℎ(U, Θ) ∨ ℎ(U, Ξ) ∨ U, ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥) whenever 

Ξ ≤ Θ.  

Proof.  (1) Suppose that N: X → LL
X×M is a non-increasing and 

reflexive LM-fgns operator on X and N = ℎ. Then it follows 

from the items (𝑁𝐼) and (𝑅𝐸) of  Theorem 3 that ℎ(V, Θ) ≤ V 

and ℎ(V, Θ) ≤ ℎ(V, Ξ) for each V ∈ LX and Θ, Ξ ∈ M with Ξ ≤
Θ. Then by  Theorem 4, we have  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥).
 

Hence, ℎ satisfies (𝑁𝑅𝐺𝐿). 
Conversely, suppose that ℎ: LX ×M → LX is an operator 

satisfying (𝑁𝑅𝐺𝐿). If we put U = V, for each Θ, Ξ ∈ M with Ξ ≤
Θ, then we have 

⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥) 
Therefore 

                  ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ) ∧ V) 
 ⇔ ℎ(V, Θ) ≤ ℎ(V, Θ) ∧ ℎ(V, Ξ) ∧ V 

                      ⇒ ℎ(V, Θ) ≤ ℎ(V, Ξ) ≤ V 

Then it follows from (𝑁𝑅𝐺𝐿) that  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥).
 

Through  Theorem 5, there exists a non-increasing LM-fgns 

operator on X such that N = ℎ. Further, we have     N(V, Θ) =

ℎ(V, Θ) ≤ V,   ∀  V ∈ LX𝑎𝑛𝑑  Θ ∈ M, 
which means that N is reflexive.  

(2)This is similar to proving (1) by utilizing dual properties. 

Theorem 11. Presume L is satisfied the double negation law and 

ℎ: LX ×M → LX is an operator, then there exists a non-increasing 

and unary LM-fgns operator N on X such that: for each 

U, V, C, D ∈ LX, and Θ, Ξ ∈ M. 

(1)  N = ℎ iff the operator ℎ satisfies (𝑁𝑈𝐺𝐿) i.e., 𝑆(U, V) ≤

𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) 
⊗ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)) whenever Ξ ≤ Θ.  

(2)N = ℎ iff the operator ℎ satisfies (𝑁𝑈𝐺𝑈) i.e., 𝑆(U, V) ≤
𝑆(ℎ(U, Θ) ∨ ℎ(U, Ξ), ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗ 𝑆(ℎ(C⊕

D, Θ⊙ Ξ), ℎ(C, Θ) ⊕ ℎ(D, Ξ))  
whenever Ξ ≤ Θ.  

Proof.  The proof is carried out in the same style as the proof of 

the previous result. 

Theorem 12. Presume L is satisfied the double negation law and 

ℎ: LX ×M → LX is an operator. Then there exists a serial and 

transitive LM-fgns operator N on X such that: for each U, V ∈ LX, 

and Θ ∈ M.   

(1) N = ℎ iff the operator ℎ satisfies (𝑆𝑇𝐺𝐿): 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥).                       

(2) N = ℎ iff the operator ℎ satisfies (𝑆𝑇𝐺𝑈):  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ ℎ(ℎ(U, Θ), Θ), ℎ(V, Θ)) ⊗

                 ¬ℎ(⊥, Θ)(𝑥) ⊗ ℎ(⊤, Θ)(𝑥)  

Proof. (1) Suppose that N: X → LL
X×M is a serial and transitive 

LM-fgns operator N on X and N = ℎ. Then it follows from  

Theorem 3 (𝑆𝐸) and (𝑇𝑅) that ℎ(⊥, Θ) =⊥, i.e., ¬ℎ(⊥, Θ) = ⊤ 

and ℎ(ℎ(V, Θ), Θ) ≥ ℎ(V, Θ) for each V ∈ LX and Θ ∈ M. By  

Theorem 4, we have that 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

    ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

    ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥)

 

Thus, ℎ satisfies (𝑆𝑇𝐺𝐿). Conversely, assume that ℎ: LX ×M →
LX is an operator satisfying (𝑆𝑇𝐺𝐿). For each Θ ∈ M, if we put 

U = V, we have that ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧
ℎ(ℎ(V, Θ), Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥). This means that 

⊤ ≤ ¬ℎ(⊥, Θ)(𝑥) for each 𝑥 ∈ X. Hence ¬ℎ(⊥, Θ) = ⊤, i.e., 

ℎ(⊥, Θ) =⊥. From (𝑆𝑇𝐺𝐿) it follows that 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

        ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

        ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ ℎ(⊤, Θ)(𝑥).

 

So through  Theorem 9, there exists a transitive LM-fgns 

operator on X such that N = ℎ. Further, we have  

N(⊥, Θ) = ℎ(⊥, Θ) =⊥, 

which means that N is serial. 

(2) This is similar to proving (1) by utilizing dual properties. 

Theorem 13. Presume L is satisfied the double negation law and 

ℎ: LX ×M → LX is an operator. Then there exists a serial and 

unary LM-fgns operator N on X such that: for each U, V, C, D ∈
LX, and Θ, Ξ ∈ M.   

(1) N = ℎ iff the operator ℎ satisfies (𝑆𝑈𝐺𝐿) :  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ 

¬ℎ(⊥, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)) 

(2) N = ℎ iff the operator ℎ satisfies (𝑆𝑈𝐺𝑈):  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗

ℎ(𝛵, Θ)(𝑥) ⊗ 𝑆(ℎ(C ⊕ D, Θ⊙ Ξ), ℎ(C, Θ) ⊕ ℎ(D, Ξ)).  
Proof.  The proof is carried out in the same style as the proof of 

the previous result. 

Theorem 14. Let ℎ: LX ×M → LX be an operator. Then there 

exists a reflexive and unary LM-fgns operator N on X such that: 

for each U, V, C, D ∈ LX, and Θ, Ξ ∈ M. 

(1) N = ℎ iff the operator ℎ satisfies (𝑅𝑈𝐺𝐿):  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥) ⊗

𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)).  

 (2) N = ℎ iff the operator ℎ satisfies (𝑅𝑈𝐺𝑈):  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ U, ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗
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𝑆(ℎ(C⊕ D, Θ⊙ Ξ), ℎ(C, Θ) ⊕ ℎ(D, Ξ)).  

Proof. (1) Suppose that N: X → LL
X×M is a reflexive and unary 

LM-fgns operator on X and N = ℎ. Then it follows from the 

items (𝑅𝐸) and (𝑈𝑁) of  Theorem 3 that ℎ(V, Θ) ≤ V and 

ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C⊗ D, Θ⊙ Ξ) for each U, V, C, D ∈ LX 

and Θ, Ξ ∈ M. Then by  Theorem 4, we get that  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤,Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ)

        ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)).

 

Thus, ℎ satisfies (𝑅𝑈𝐺𝐿). 
Conversely, suppose that ℎ: LX ×M → LX is an operator 

satisfying (𝑅𝑈𝐺𝐿). For each Θ, Ξ ∈ M, if we take U = V, then 

we have 

⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ)

⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)) 
Therefore 
⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ V) ⇔ ℎ(V, Θ) ≤ ℎ(V, Θ) ∧ V

⇔ ℎ(V, Θ) = ℎ(V, Θ) ∧ V

⇔ ℎ(V, Θ) ≤ V.

 

Then it follows from (𝑅𝑈𝐺𝐿) that  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V) ⊗ ℎ(⊤, Θ)(𝑥) ⊗

        𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ))

= 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗

        𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)).

 

So through  Theorem 8, there exists an unary LM-fgns operator 

on X such that N = ℎ. Further, we have  

    N(V, Θ) = ℎ(V, Θ) ≤ V,   ∀  V ∈ LX𝑎𝑛𝑑  Θ ∈ M. 
This implies that N is reflexive. 

(2) This is similar to proving (1) by utilizing dual properties. 

Theorem 15.  Let ℎ: LX ×M → LX be an operator. Then there 

exists a reflexive and transitive LM-fgns operator N on X such 

that: for each U, V ∈ LX, and Θ ∈ M.   

(1) N = ℎ iff the operator ℎ satisfies (𝑅𝑇𝐺𝐿) :  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ)) 

⊗ℎ(⊤, Θ)(𝑥) 

(2)N = ℎ iff the operator ℎ satisfies (𝑅𝑇𝐺𝑈):  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ U ∨ ℎ(ℎ(U, Θ), Θ), ℎ(V, Θ)) 
⊗¬ℎ(⊥, Θ)(𝑥).  

Proof.  (1) Suppose that N: X → LL
X×M is a reflexive and 

transitive LM-fgns operator on X and N = ℎ. Then it follows 

from the elements (𝑅𝐸) and (𝑇𝑅) of  Theorem 3 that ℎ(V, Θ) ≤
V and ℎ(V, Θ) ≤ ℎ(ℎ(V, Θ), Θ) for eachV ∈ LX and Θ ∈ M. Then 

by  Theorem 4, we have  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

    ℎ(⊤, Θ)(𝑥).

 

Hence, ℎ satisfies (𝑅𝑇𝐺𝐿). 
Conversely, assume that ℎ: LX ×M → LX is an operator 

satisfying (𝑅𝑇𝐺𝐿). If we put U = V, for each Θ ∈ M, then we 

have 

 ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ (⊤, Θ)(𝑥) 
Therefore 

⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ)) 
⇔ ℎ(V, Θ) ≤ ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ) 

⇒ ℎ(V, Θ) ≤ V 

Then it follows from (𝑅𝑇𝐺𝐿) that  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

    ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

    ℎ(⊤, Θ)(𝑥).

 

Through  Theorem 9, there exists a transitive LM-fgns operator 

on X such that N = ℎ. Further, we have  

N(V, Θ) = ℎ(V, Θ) ≤ V,   ∀  V ∈ LX𝑎𝑛𝑑  Θ ∈ M, 

which means that N is reflexive.  

(2) This is similar to proving (1) by utilizing dual properties.  

Theorem 16. Let ℎ: LX ×M → LX be an operator. Then there 

exists an unary and transitive LM-fgns operator N on X such that: 

for each U, V, C, D ∈ LX, and Θ, Ξ ∈ M. 

(1) N = ℎ iff the operator ℎ satisfies the axiom (𝑈𝑇𝐺𝐿):  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗
ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)).  

(2) N = ℎ iff the operator ℎ satisfies the axiom (𝑈𝑇𝐺𝑈):  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ ℎ(ℎ(U, Θ), Θ), ℎ(V, Θ)) ⊗
¬ℎ(⊥, Θ)(𝑥) ⊗ 𝑆(ℎ(C ⊕ D, Θ⊙ Ξ), ℎ(C, Θ) ⊕ ℎ(D, Ξ)).  

Proof.  (1) Suppose that N: X → LL
X×M is an unary and transitive 

LM-fgns operator on X and N = ℎ. Then it follows from the 

items (𝑈𝑁) and (𝑇𝑅) of  Theorem 3 that ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤
ℎ(C ⊗ D, Θ⊙ Ξ) and ℎ(V, Θ) ≤ ℎ(ℎ(V, Θ), Θ) for each 

U, V, C, D ∈ LX and Θ, Ξ ∈ M. Then by  Theorem 4, we get that  

 

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ))

        ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ))

        ⊗ ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ),

        ℎ(C⊗ D, Θ⊙ Ξ))

 

So, ℎ satisfies (𝑈𝑇𝐺𝐿). 
Conversely, assume that ℎ: LX ×M → LX is an operator 

satisfying (𝑈𝑇𝐺𝐿). Taking U = V, for each Θ, Ξ ∈ M, we have 

⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗
ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)), 
It follows that 

⊤ ≤ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)) 
⇔ ⊤ = 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)) 

         ⇔ ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C ⊗ D, Θ⊙ Ξ) 
Then it follows from (𝑈𝑇𝐺𝐿) that  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

        ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ))

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ ℎ(⊤, Θ)(𝑥).

 

From  Theorem 9, there exists a transitive LM-fgns operator N 

on X such that N = ℎ. Furthermore, we get 

N(C, Θ) ⊗ N(D, Ξ) = ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C⊗

D, Θ⊙ Ξ) = N(C⊗ D, Θ⊙ Ξ),   ∀  C, D ∈ LX𝑎𝑛𝑑  Θ, Ξ ∈ M. 

Therefore, N is unary.  

(2) This is similar to proving (1) by utilizing dual properties.  

Theorem 17. Let L be satisfied the double negation law and 

ℎ: LX ×M → LX be an operator, then there exists a serial, unary 

and transitive LM-fgns operator N on X such that: for each 

U, V, C, D ∈ LX, and Θ, Ξ ∈ M. 

(1) N = ℎ iff the operator ℎ satisfies the axiom (𝑆𝑈𝑇𝐺𝐿): 
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𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ (⊤, Θ)(𝑥) ⊗

¬ℎ(⊥, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)).  

(2) N = ℎ iff the operator ℎ satisfies the axiom (𝑆𝑈𝑇𝐺𝑈): 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ ℎ(ℎ(U, Θ), Θ), ℎ(V, Θ)) ⊗ ¬ℎ(⊥, Θ)(𝑥) 

⊗ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C⊕ D, Θ⊙ Ξ), ℎ(C, Θ) ⊕

                 ℎ(D, Ξ)).   

Proof.  (1) Assume that N: X → LL
X×M is a serial, unary and 

transitive LM-fgns operator N on X and N = ℎ. Then it follows 

from  Theorem 3 (𝑆𝐸), (𝑈𝑁) and (𝑇𝑅) that ℎ(⊥, Θ) =⊥, i.e., 

¬ℎ(⊥, Θ) = ⊤ , ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C⊗ D, Θ⊙ Ξ) and 

ℎ(V, Θ) ≤ ℎ(ℎ(V, Θ), Θ) for each U, V, C, D ∈ LX and Θ, Ξ ∈ M. 

Then by  Theorem 4, we have  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ))

        ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

        ⊗ ¬ℎ(⊥, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ))

        ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

        ⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗

        𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ))

 

Hence, ℎ satisfies (𝑆𝑈𝑇𝐺𝐿). 
Conversely, assume that the operator ℎ: LX ×M → LX is 

satisfying the axiom (𝑆𝑈𝑇𝐺𝐿). For each Θ, Ξ ∈ M, if we put U =
V, then we have 
⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ))⊗ ℎ(⊤,Θ)(𝑥)⊗

        ¬ℎ(⊥, Θ)(𝑥) ⊗ 𝑆([ℎ(C, Θ) ⊗ ℎ(D, Ξ)], [ℎ(C ⊗ D, Θ⊙ Ξ)])

Therefore 

⊤ ≤ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)) 
⇔ ⊤ = 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)) 

         ⇔ ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C ⊗ D, Θ⊙ Ξ) 
Then it follows from (𝑆𝑈𝑇𝐺𝐿) that 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

        ℎ(𝛵, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗

        𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ))

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ))

        ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ¬ℎ(⊥, Θ)(𝑥).

  

By  Theorem 12, there exists a serial and transitive LM-fgns 

operator on X such that N = ℎ. Further, we have  

N(C, Θ) ⊗ N(D, Ξ) = ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C⊗ D, Θ⊙

Ξ) = N(C⊗ D, Θ⊙ Ξ),   ∀  C, D ∈ LX𝑎𝑛𝑑  Θ, Ξ ∈ M. 

Therefore, N is unary. 

(2) This is similar to proving (1) by utilizing dual properties.  

Theorem 18 Let ℎ: LX ×M → LX be an operator. Then there 

exists a reflexive, unary and non-increasing LM-fgns operator 

on X such that: for each U, V, C, D ∈ LX, and Θ, Ξ ∈ M.   

(1) N = ℎ iff the operator ℎ satisfies the axiom (𝑅𝑈𝑁𝐺𝐿):  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗

𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)) whenever Ξ ≤ Θ.  

(2) N = ℎ iff the operator ℎ satisfies the axiom (𝑅𝑈𝑁𝐺𝑈):  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ ℎ(U, Ξ) ∨ U, ℎ(V, Θ)) ⊗
¬ℎ(⊥, Θ)(𝑥) ⊗ 𝑆(ℎ(C ⊕ D, Θ⊙ Ξ), ℎ(C, Θ) ⊕ ℎ(D, Ξ)) 
whenever Ξ ≤ Θ.  

Proof.  (1) Assume that N: X → LL
X×M is a reflexive, unary and 

non-increasing LM-fgns operator on X and N = ℎ. Then it 

follows from the items (𝑅𝐸), (𝑈𝑁) and (𝑁𝐼) of  Theorem 3, 

ℎ(V, Θ) ≤ V, ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C⊗ D, Θ⊙ Ξ) and 

ℎ(V, Θ) ≤ ℎ(V, Ξ) for each U, V, C, 𝐷 ∈ LX and Θ, Ξ ∈ M 

whenever Ξ ≤ Θ . Also, by  Theorem 4, we have 
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(V, Ξ)) ⊗

        ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥)

        ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)).

 

Thus, ℎ satisfies (𝑅𝑈𝑁𝐺𝐿). 
conversely, assume that the operator ℎ: LX ×M → LX is 

satisfying the axiom (𝑅𝑈𝑁𝐺𝐿). For each Θ, Ξ ∈ M with Ξ ≤ Θ, 

if we put U = V, then we obtain that 

 ⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥) ⊗

             𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)). 
This means that 

                       ⊤ ≤ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)) 
          ⇔ ⊤ = 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)) 

⇔ ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C ⊗ D, Θ⊙ Ξ). 
Then it follows from (𝑅𝑈𝑁𝐺𝐿) that  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤,Θ)(𝑥)

        ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ))

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(V, Ξ)) ⊗ ℎ(⊤, Θ)(𝑥).

 

Then by  Theorem 10, there exists a reflexive and non-

increasing LM-fgns operator on X such that N = ℎ. Further, we 

have  ∀  C, D ∈ LX𝑎𝑛𝑑  Θ, Ξ ∈ M, 
N(C, Θ) ⊗ N(D, Ξ) = ℎ(C, Θ) ⊗ ℎ(D, Ξ)

≤ ℎ(C ⊗ D, Θ⊙ Ξ)    = N(C⊗ D, Θ⊙ Ξ),   

which means that N is unary.  

(2)This is similar to proving (1) by utilizing dual properties.  

Theorem 19. Let ℎ: LX ×M → LX be an operator, then there 

exists a reflexive, unary and transitive LM-fgns operator on X 

such that: for each U, V, C, D ∈ LX, and Θ, Ξ ∈ M. 

 (1) N = ℎ iff the operator ℎ satisfies the axiom (𝑅𝑈𝑇𝐺𝐿):  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧  ℎ(ℎ(V, Θ), Θ)) 

     ⊗ ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗

                          D, Θ ⊙ Ξ)).  

(2) N = ℎ iff the operator ℎ satisfies the axiom (𝑅𝑈𝑇𝐺𝑈):  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ) ∨ U ∨ ℎ(ℎ(U, Θ), Θ), ℎ(V, Θ))

⊗ ¬ℎ(⊥, Θ)(𝑥) ⊗ 

𝑆(ℎ(C⊕ D, Θ⊙ Ξ), ℎ(C, Θ) ⊕ ℎ(D, Ξ)).  

Proof.  (1) Assume that N: X → LL
X×M is a reflexive, unary and 

transitive LM-fgns operator on X and N = ℎ. Then it follows 

from the items (𝑅𝐸), (𝑈𝑁) and (𝑇𝑅) of  Theorem 3 ℎ(V, Θ) ≤
V, ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C⊗ D, Θ⊙ Ξ) and ℎ(V, Θ) ≤
ℎ(ℎ(V, Θ), Θ) for each U, V, C, D ∈ LX and Θ, Ξ ∈ M. Also, by  

Theorem 4, we obtain  
𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ)) ⊗ ℎ(⊤, Θ)(𝑥)

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ))

        ⊗ ℎ(⊤, Θ)(𝑥) ⊗ ⊤

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

        ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ),

        ℎ(C⊗ D, Θ⊙ Ξ)).
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Thus, ℎ satisfies (𝑅𝑈𝑇𝐺𝐿). 
conversely, assume that the operator ℎ: LX ×M → LX is 

satisfying the axiom (𝑅𝑈𝑇𝐺𝐿). For each Θ, Ξ ∈ M, if we put 

U = V, then we get that 

⊤ ≤ 𝑆(ℎ(V, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ)) ⊗
ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)). 
This means that 

                       ⊤ ≤ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C⊗ D, Θ⊙ Ξ)) 
           ⇔ ⊤ = 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ), ℎ(C ⊗ D, Θ⊙ Ξ)) 

⇔ ℎ(C, Θ) ⊗ ℎ(D, Ξ) ≤ ℎ(C ⊗ D, Θ⊙ Ξ) 
Then it follows from (𝑅𝑈𝑇𝐺𝐿) that  

𝑆(U, V) ≤ 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ V ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

        ℎ(⊤, Θ)(𝑥) ⊗ 𝑆(ℎ(C, Θ) ⊗ ℎ(D, Ξ),

        ℎ(C⊗ D, Θ⊙ Ξ))

= 𝑆(ℎ(U, Θ), ℎ(V, Θ) ∧ ℎ(ℎ(V, Θ), Θ)) ⊗

        ℎ(⊤, Θ)(𝑥).

 

Then from  Theorem 15, there exists a reflexive and transitive 

LM-fgns operator on X such that N = ℎ. Moreover, we get 

N(C, Θ) ⊗ N(D, Ξ) = ℎ(C, Θ) ⊗ ℎ(D, Ξ ≤ ℎ(C ⊗ D, Θ⊙ Ξ)

= N(C⊗ D, Θ⊙ Ξ),   ∀  C, D ∈ LX𝑎𝑛𝑑  Θ, Ξ

∈ M, 
which means that N is unary.  

(2) This is similar to proving (1) by utilizing dual properties. 

Now, we present some results based on Theorem 19. 

Using the definition of the LM-quasi-fuzzy interior (LM-QFInt) 

operator on X  [47], we find the operator N: LX ×M → LX is an 

LM-QFInt operator iff N is unary, transitive, reflexive, and a 

non-increasing LM-fgns  [29]. Therefore, the following result is 

obtained. 

 Theorem 20. Let I: LX ×M → LX be an LM-QFInt operator. 

Then there exists a reflexive, unary and transitive LM-fgns 

operator N: X → LL
X×M such that N = I if and only if I is 

provided with the following property: for each U, V ∈ LX and 

Θ ∈ M.  

(𝐼𝑁𝐺𝐿) 𝑆(U, V) ≤ 𝑆(I(U, Θ), I(V, Θ)) ⊗ I(⊤, Θ). 
Proof. It is clear by  Theorem 1. 

Conversely, from the definition of LM-QFInt operator on X, we 

get I(U, Θ) ≤ U, and I(U, Θ) ≤ I(I(U, Θ), Θ) for each U ∈ LX and 

Θ ∈ M . Because I satisfy (𝐼𝑁𝐺𝐿), we find I satisfies (𝑅𝑈𝑇𝐺𝐿). 
Moreover, from  Theorem 19, there exists a reflexive, 

transitive, and unary LM-fgns operator N on X such that N = I.  

 By utilizing Theorem 20 and the relationship between LM -

QFInt operator and LM-quasi-fuzzy topology on X  [47], we 

establish the relationship between LM-Rapprox operators based 

on LM-fgns and LM-quasi-fuzzy topology.  

Similarly, using the definition of LM-fuzzy closure (LM-FCl)  

[29] on X, we obtain the operator N: LX ×M⊥ → LX be an LM-

FCl operator iff N is a non-increasing, reflexive, transitive and 

unary LM-fgns  [29]. Therefore, we get the following result.   

Theorem 21. Presume 𝐶: LX ×M⊥ → LX an LM-FCl operator. 

Then there exists a reflexive, unary and transitive LM-fgns 

operator N: X → LL
X×M such that N = 𝐶 if and only if 𝐶 is 

provided with the following property: for each U, V ∈ LX, and 

Θ ∈ M, where L satisfy the law of double negation.  

(𝐶𝑂𝐺𝐿)𝑆(U, V) ≤ 𝑆(𝐶(U, Θ), 𝐶(V, Θ)) ⊗ ¬𝐶(⊥, Θ). 
Proof. It follows immediately from  Theorem 20.  

 The same way, by utilizing Theorem 21 and the relationship 

between LM-FCl operator and LM-fuzzy co-topology on X  [47], 

we establish the relationship between LM-Rapprox operators 

based on LM-fgns and LM-fuzzy co-topology.  

Remark 3. The results presented in this paper generalize the 

those introduced by Zhao et al. [26].   

4. Conclusions 

In this article, we have successfully established single axioms 

for the characterization of LM-Rapprox operators, generated by 

non-increasing, unary, reflexive, serial, and transitive LM-fgns. 

Furthermore, we have presented the connections between LM-

Rapprox operators based on LM-fgns and LM-quasi-fuzzy 

topologies. Our results show that the lower and upper LM-

Rapprox operators derived from non-increasing, unary, 

reflexive, serial, and transitive LM-fgns correspond exactly to a 

pair of LM-QFInt and LM-FCl operators, respectively.  

   The findings of this study offer substantial advancements in 

the theoretical foundations of rough set theory, establishing a 

solid basis for subsequent investigations and potential real-

world applications in contexts characterized by imprecision and 

indeterminacy. Moreover, the outcomes enrich the fields of 

artificial intelligence and decision-making. As a direction for 

future work, these results can be extended to integrate with 

emerging computational paradigms, such as neutrosophic 

models, deep learning frameworks, and intelligent decision-

support systems. 
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