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Abstract: Nano/microelectromechanical systems (N/MEMS) have garnered significant attention in recent decades due to their 

miniature size, potential for batch fabrication, high reliability, and low power consumption. This study examines the nonlinear 

vibration behavior of an electrostatically actuated clamped-clamped microbeam, described by a second-order nonlinear ordinary 

differential equation that accounts for both mid-plane stretching and electrostatic forces. In contrast to earlier analytical 

approaches, which primarily relied on perturbation techniques or purely numerical solutions, the present work applies the extended 

Galerkin method (EGM) to obtain higher-order approximate solutions for the system’s nonlinear dynamic response. The key 

novelty lies in the implementation of EGM for a strongly nonlinear MEMS configuration and its extension to higher-order terms, 

which enables the accurate characterization of hardening/softening behaviors and resonance shifts. The derived solutions are 

validated through comparison with numerical simulations based on the Runge-Kutta method and with existing analytical results, 

showing that EGM delivers more accurate frequency-amplitude predictions while avoiding small-parameter assumptions and 

reducing computational effort. The findings underscore the potential of EGM as an efficient and precise analytical approach for the 

design and performance analysis of nonlinear MEMS resonators. 
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1. Introduction 

The study of non-linear differential equations plays a 

crucial role in engineering, applied mathematics, engineering, 

physics and related fields. Significant attention has been given 

to developing analytical approximation methods for nonlinear 

oscillators that can provide accurate predictions of both the 

oscillation frequency and the corresponding solutions. 

Microelectromechanical systems (MEMS) have gained 

considerable attention in recent decades due to their wide-

ranging applications in sensing, actuation, and signal 

processing. One of the fundamental components in many 

MEMS devices is the microbeam, which often serves as a 

structural and functional element in devices such as resonators, 

switches, and sensors. When subjected to electrostatic 

actuation, these microbeams exhibit complex dynamic 

behavior, especially under large deflections where geometric 

nonlinearities become significant [1-4]. 

In the design and analysis of such systems, accurate 

modeling of nonlinear vibrations is crucial for predicting 

performance, ensuring stability, and avoiding failure due to 

phenomena such as pull-in instability. Classical linear theories 

are inadequate for capturing the essential dynamics of 

microbeams experiencing large deformations and nonlinear 

electrostatic forces. Therefore, advanced analytical methods 

are required to obtain reliable predictions for such nonlinear 

systems [5]. 

Micro-electro-mechanical systems (MEMS) have a wide 

range of applications, including sensors, accelerometers, 

biomechanics, microswitches, transistors, electronics, 

consumer as well as in optical, aerospace, and biomedical 

engineering, highlighting their significant impact across 

various fields. Among the different actuation methods 

employed in MEMS, electrostatic actuation is the most 

commonly used. This type of actuation is typically modelled 

by an electrostatically actuated microbeam positioned between 

a pair of fixed electrodes [6, 7]. 

Given the importance of the (MEMS), recently there are 

many an-alytical techniques for solving the MEMS problems, 

such as frequency-amplitude formulation (FAF) [8], homotopy 

perturbation method (HPM) [9, 10], variational iteration 

method (VIM) [11], energy balance method (EBM) [12-14], 

parameter expansion method (PEM) [15, 16], variational 

approach (VA) [17], homotopy analysis method (HAM) [18], 

Hamiltonian approach (HA) [19-21], spreading residue 

harmonic balance method (SRHBM) [22, 23], global residue 

harmonic balance method (GRHBM) [24, 25], modified 

harmonic balance method (MHBM) [26-28], Ateb function 

(AF) [29], non-perturbative approach (NPA) [30], and so on 

[31-33]. 

This study focuses on the analytical investigation of the 

nonlinear vibration behavior of a fully clamped 

electrostatically actuated microbeam. The analysis is based on 

the classical Euler-Bernoulli beam theory, incorporating the 

effects of mid-plane stretching, which introduces a geometric 
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nonlinearity due to axial strain. Additionally, the electrostatic 

force is modeled as a nonlinear distributed load that depends 

inversely on the square of the gap between the beam and the 

substrate. 

To solve the resulting highly nonlinear second-order 

differential equation, the extended Galerkin Method (EGM) is 

employed. Unlike the standard Galerkin approach, the EGM 

provides improved accuracy by enhancing the representation of 

nonlinear terms, making it particularly suitable for strongly 

nonlinear MEMS problems. The method reduces the governing 

equation to a set of nonlinear ordinary differential equations, 

which are then analyzed to study the dynamic response and 

stability of the system. 

This paper aims to obtain analytical approximate solutions 

to the large-amplitude vibration of electrostatically actuated 

micro-beams. Furthermore, results obtained using the EGM are 

compared with other established analytical and semi-analytical 

methods and numerical solutions using fourth order Runge-

Kutta method, highlighting the advantages and accuracy of the 

present approach. 

2. Nonlinear vibration of an electrostatically 

actuated microbeam 

The governing equation for such a system is a nonlinear 

second-order differential equation derived from classical beam 

theory, incorporating the effects of axial stretching and 

distributed electrostatic loading. In Figure 1, we consider a 

fully clamped microbeam positioned between two fixed 

electrodes, with length L, thickness h, and width b. Using 

classical beam theory and accounting for mid-plane stretching 

effects along with the distributed electrostatic force, the 

dimensionless form of the micro-beam’s equation of motion 

can be expressed as presented in [12]. 

 

Figure 1: Diagram of a clamped-clamped microbeam-based 
electromechanical resonator driven from both sides [12]. 

 

(a3 + a2x2 + a1x4)ẍ + a4x + a5x3 + a6x5 + a7x7 =
0                                                                                      (1) 
with 

x(0) = A, ẋ(0) = 0,                            (2) 
where the coefficients 𝑎1, 𝑎2,…, 𝑎7 can be determined as 

given in Ref. [12]  

a1 = ∫ 𝜙6𝑑𝜁,
1

0

 

a2 = −2 ∫ 𝜙4𝑑𝜁,
1

0

 

a3 = ∫ 𝜙2𝑑𝜁,
1

0

 

a4 = ∫ (𝜙′′′𝜙 − 𝑁𝜙′′𝜙 − 𝑉2𝜙2)𝑑𝜁,
1

0

 

a5 = − ∫ (2𝜙′′′′𝜙3 − 2𝑁𝜙′′𝜙3 + 𝛼𝜙′′𝜙 ∫ 𝜙′2𝑑𝜁
1

0

) 𝑑𝜁,
1

0

 

a6 = − ∫ (𝜙′′′′𝜙5 − 𝑁𝜙′′𝜙5 + 2𝛼𝜙′′𝜙3 ∫ 𝜙′2𝑑𝜁
1

0

) 𝑑𝜁,
1

0

 

a7 = − ∫ (𝛼𝜙′′𝜙5 ∫ 𝜙′2𝑑𝜁
1

0

) 𝑑𝜁,
1

0

 

(3) 

where the following dimensionless variables and parameters 

are defined according to Fu et al. [12]: 

2 4 22
20 0

2 3 3
0

6 24
, , ,

g l Vx Nl
N V

l EIh Eh g

e
a z= = = =    (4) 

3. Approximate solutions with the extended 

Galerkin method 

       It is well known that numerous approximate methods and 

techniques exist for solving non-linear differential equation (1), 

and several of these are particularly effective in addressing 

nonlinear vibration problems. For the problem shown in (1), 

there are no known efforts even with some popular 

approximate methods due to the unusual complication of the 

equation. To test the effectiveness and applicability of the 

extended Galerkin method (EGM), a standard procedure with 

the combination of the linear solutions are utilized for the 

asymptotic solutions as shown in recent studies [34-37]. 

𝑥(𝑡) = ∑ 𝐴2𝑘+1 cos(2𝑘 + 1) 𝜔𝑡,𝑛
𝑘=0                           (5) 

where A2k+1, ω and t are amplitudes, frequency, and time, 

respectively.   

By substituting (5) into (1), the Lagrangian functional is 

reformulated, allowing the application of the extended 

Galerkin method (EGM) as in the following formula. 

∫ (−[𝑎3 + 𝑎2(∑ 𝐴2𝑘+1 cos(2𝑘 +𝑛
𝑘=0

2𝜋 𝜔⁄

0

1) 𝜔𝑡)2+𝑎1(∑ 𝐴2𝑘+1 cos(2𝑘 +𝑛
𝑘=0

1) 𝜔𝑡)4] ∑ (2𝑘 + 1)2𝐴2𝑘+1 cos(2𝑘 + 1) 𝜔𝑡
𝑛

𝑘=0
+

𝑎4(∑ 𝐴2𝑘+1 cos(2𝑘 + 1) 𝜔𝑡𝑛
𝑘=0 ) +

𝑎5(∑ 𝐴2𝑘+1 cos(2𝑘 + 1) 𝜔𝑡𝑛
𝑘=0 )3 +

𝑎6(∑ 𝐴2𝑘+1 cos(2𝑘 +𝑛
𝑘=0

1) 𝜔𝑡)5+𝑎7(∑ 𝐴2𝑘+1 cos(2𝑘 +𝑛
𝑘=0

1) 𝜔𝑡)7) cos(2𝑘 + 1) 𝜔𝑡 𝑑𝑡 = 0.                            (6) 
For application to nano/microelectromechanical systems 

(N/MEMS), (6) is expressed in the standard form as: 

∫ ((𝑎3 + 𝑎2𝑥2 + 𝑎1𝑥4)𝑥̈ + 𝑎4𝑥 + 𝑎5𝑥3 + 𝑎6𝑥5 +
𝑇𝑛

0

𝑎7𝑥7)cos(2𝑘 − 1)𝜔𝑡 𝑑𝑡 = 0.                       (7) 
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The solution can be obtained up to higher-order expansions. 

Through such a procedure, the increase in accuracy can be 

seen, and solution techniques related to amplitudes can be 

tested. 

4. Solution procedure with the extended Galerkin 

method 

4.1. First order extended Galerkin method 

Assume that the first-order approximation of (5) is: 

𝑥(𝑡) = 𝐴1 𝑐𝑜𝑠 𝜔𝑡.                            (8) 
Substituting (8) into (2) will result in the amplitude solution 

as 

𝐴1 = 𝐴.                                    (9) 

Inserting (8) and (9) into (7) with the period of vibration of 

the first-order mode as T =
2π

ω
,  

∫ ((𝑎3 + 𝑎2𝑥2 + 𝑎1𝑥4) 𝑥̈ + 𝑎4𝑥 + 𝑎5𝑥3 +
2𝜋 𝜔⁄

0

𝑎6𝑥5 + 𝑎7𝑥7) cos(𝜔𝑡) 𝑑𝑡 = 0.                              (10) 
Resulting in 

−
5

8
𝐴5𝜋𝜔𝑎1 −

3

4
𝐴3𝜋𝜔𝑎2 − 𝐴𝜋𝜔𝑎3 +

𝐴𝜋𝑎4

𝜔
+

3𝐴3𝜋𝑎5

4𝜔
+

5𝐴5𝜋𝑎6

8𝜔
+

35𝐴7𝜋𝑎7

64𝜔
= 0.                              (11) 

Solving (11), the approximate solution for ω given by 

𝜔 = √
64𝑎4+48𝐴2𝑎5+40𝐴4𝑎6+35𝐴6𝑎7

40𝐴4𝑎1+48𝐴2𝑎2+64𝑎3
.                    (12) 

As seen in (12), the first-order approximate solution of 

N/MEMS coincides with that obtained by several existing 

methods. The solution is valid for small deformations of x(t) 

and is widely applicable. This confirms that the extended 

Galerkin method reproduces the same results as other 

approximate techniques when applied to standard 

nano/microelectromechanical systems (N/MEMS). 

4.2. Second order extended Galerkin method 

The second-order approximation for the solution of (7) is 

taken as follows: 

𝑥(𝑡) = 𝐴1 𝑐𝑜𝑠 𝜔𝑡 + 𝐴3 𝑐𝑜𝑠 3𝜔𝑡,                           (13) 

where A1 and A3 are the amplitude. With the boundary 

condition in (2), it is clear that  

𝐴1 = 𝐴 − 𝐴3.                                                 (14) 

Now, we extended (7) into two equations as 

∫ ((𝑎3 + 𝑎2𝑥2 + 𝑎1𝑥4) 𝑥̈ + 𝑎4𝑥 + 𝑎5𝑥3 +
2𝜋 𝜔⁄

0

𝑎6𝑥5 + 𝑎7𝑥7)cos(𝜔𝑡) 𝑑𝑡 = 0,                               (15) 

∫ ((𝑎3 + 𝑎2𝑥2 + 𝑎1𝑥4) 𝑥̈ + 𝑎4𝑥 + 𝑎5𝑥3 +
2𝜋 𝜔⁄

0

𝑎6𝑥5 + 𝑎7𝑥7)cos(3𝜔𝑡) 𝑑𝑡 = 0.                             (16) 

Substituting (14) into (15), it yields 

𝜔 =
√∆1+∆2

2√∆3
,                                                 (17) 

where 

∆1= 64𝑎4 + 40𝐴4𝑎6 + 35𝐴6𝑎7 − 60𝐴3𝑎6𝐴3 − 63𝐴5𝑎7𝐴3

+ 180𝐴2𝑎6𝐴3
2 + 231𝐴4𝑎7𝐴3

2 − 220𝐴𝑎6𝐴3
3, 

∆2= −469𝐴3𝑎7𝐴3
3 + 180𝑎6𝐴3

4 + 756𝐴2𝑎7𝐴3
4 − 714𝐴𝑎7𝐴3

5

+ 364𝑎7𝐴3
6 + 48𝑎5(𝐴2 − 𝐴𝐴3 + 2𝐴3

2), 

∆3= (𝑎1(10𝐴4 + 25𝐴3𝐴3 + 117𝐴2𝐴3
2 − 175𝐴𝐴3

3 + 245𝐴3
4)

+ 4(4𝑎3 + 𝑎2(3𝐴2 + 5𝐴𝐴3 + 30𝐴3
2))). 

Substituting (13), (14) and (17) into (16) and making 

necessary simplifications, then the approximate solution of the 

second-order amplitude is 

A3 = (−320A5a1a4 − 256A3a2a4 − 80A7a1a5 +

256A3a3a5 + 80A7a2a6 + 320A5a3a6 +

35A11a1a7 + 112A9a2a7 +

336A7a3a7)/(2752A4a1a4 + 4096A2a2a4 +

8192a3a4 + 1424A6a1a5 + 2560A4a2a5 +

6144A2a3a5 + 1120A8a1a6 + 2160A6a2a6 +

5440A4a3a6 + 1015A10a1a7 + 1988A8a2a7 +

5040A6a3a7).                                                         (18) 

It is clear that a different solution in comparisons with 

earlier studies is obtained in (17), and the approximate one. As 

it can be seen, the solutions are obtained by the linearization of 

equations for amplitudes as a simplification.   

Further improvement of the solution procedure and results 

can be done with an iterative procedure, as it has been 

demonstrated in earlier studies with the extended Galerkin 

method [34], implying the solutions in (17) can be further 

improved.  

5. Results and Discussion 

To assess the accuracy of the extended Galerkin method, 

we compare the analytical approximate solutions with the 

numerical fourth order Runge-Kutta method in Figure 2. 

Additionally, the calculated outcomes are presented and 

contrasted with existing results from the literature in Table 1. 

Table 1 demonstrates the accuracy of the (EGM), 

highlighting its strong agreement with both the exact analytical 

solution and other well-known analytical methods. The results 

presented in Table 1 and Figure 1, confirm that EGM provides 

highly precise solutions, comparable to those of the homotopy 

analysis method, while maintaining simplicity and avoiding 

numerical complexity. Additionally, the differential 

transformation method is shown to be more accurate than both 

the variational approach (VA) and the energy balance method 

(EBM), whose results are found to be less reliable.  
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To further understand the influence of amplitude on the 

conventional MEMS model, the effects of other parameters 

namely 𝑁, 𝑉, and 𝛼 on the second-order approximations 

obtained using the Extended Galerkin Method (EGM) are 

examined in more detail. In Figure (3-a), the parameters are set 

as 𝑁=4, 8, 16, 24 with 𝑉=5 and 𝛼=20. Figure (3-b) presents 

results for varying 𝑉=0, 4, 8, 12 while keeping 𝑁=8 and 𝛼=20. 

Figure (3-c) shows the numerical behavior of solutions for 

different values of 𝛼=5, 10, 15, 20 with 𝑁=10 and 𝑉=20. It is 

observed that the sensitivity of both first- and second-order 

approximations to these parameters follows a similar pattern. 

Therefore, based on the numerical results shown in these 

figures, it can be concluded that EGM demonstrates stable and 

consistent performance across various parameter settings. 

Figure 4 illustrates the effects of the parameters N, V, and α 

on the nonlinear frequency of the micro-beam. It is evident that 

the nonlinear frequency decreases with an increase in the 

applied voltage (V), while it increases with higher values of 

axial compressive force (N) and the initial gap (α) between the 

micro-beam and the fixed electrodes. However, at high values 

of the applied voltage V, the micro-beam becomes unstable. 

Table 1: Comparison of the approximate frequencies with the exact 

frequencies for different parameter values in (1). 

 A   N        V 
 𝝎𝑯𝑨  

(Error %) 

𝝎𝑬𝑩𝑴 
(Error %) 

𝝎𝑽𝑨  
(Error %) 

𝝎𝑯𝑨𝑴  
(Error %) 

𝝎𝑮𝑹𝑯𝑩𝑴 
(Error %) 

𝝎𝑬𝑮𝑴 
(Error %) 

𝝎𝑬𝒙𝒂𝒄𝒕 

Constant 

Parameters 
[21] [12] [17] [18] [24] Present [18] 

0.3 10 24 0 26.3669 26.3867 26.3644 26.8372 26.8372 26.8372 26.8372 

    (1.7837) (1.7073) (1.7933) (0.0000) (0.0000) (0.0000)  

0.3 10 24 20 16.3547 16.3829 16.3556 16.6486 16.6486 16.6486 16.6486 
    (1.7970) (1.6218) (1.7914) (0.0000) (0.0000) (0.0000)  

0.6 10 24 10 26.3562 26.5324 26.1671 28.5368 28.5378 28.5391 28.5382 

    (8.2789) (7.5598) (9.0614) (0.0049) (0.0014) (0.0050)  
0.6 10 24 20 17.3013 17.5017 17.0940 18.5902 18.5902 18.5962 18.5902 

    (7.4497) (6.2194) (8.7528) (0.0000) (0.0000) (0.0322)  

 

The analytical expression derived in (13) allows for 

examining the influence of the parameters defined in (4) on the 

nonlinear frequency. Figure (4-a) illustrates the effect of the 

axial load parameter N on the nonlinear frequency as a 

function of amplitude, with α=24 and V=10. Notably, the 

impact of N on the frequency is amplitude-dependent. At low 

amplitudes, increasing the axial tensile load results in a higher 

nonlinear frequency. However, as the amplitude approaches 

unity, the frequency becomes nearly independent of N. 

Furthermore, for each value of axial load, there exists specific 

amplitude at which the frequency reaches its maximum. Figure 

(4-b) presents the influence of the electrostatic load parameter 

V on the nonlinear frequency, with α=24 and N=10. It shows 

that increasing V leads to a decrease in frequency at given 

amplitude. Interestingly, for each value of V, the frequency 

first increases with amplitude, then decreases, indicating a peak 

frequency at particular amplitude for each electrostatic load. 

Figure (4-c) shows the effect of the parameter α on the 

nonlinear frequency, with N=V=10. It is observed that at small 

amplitudes, the frequency remains unaffected by changes in α. 

Since α represents the ratio of the initial gap (g₀) to the beam 

thickness h, this suggests that variations in the initial gap do 

not significantly influence the frequency at low amplitudes for 

a given beam geometry. A similar trend is observed at 

amplitudes near unity. In all cases, the maximum frequency 

occurs around the amplitude of 0.8 for each value of α. 

 

                       (a) A = 0.3, V = 0, N = 10, α = 24 

 

                    (b) A = 0.3, V = 20, N = 10, α = 24 

 

                 (c) A = 0.6, V = 10, N = 10, α = 24. 

 

                 (d) A = 0.6, V = 20, N = 10, α = 24. 

Figure 2: Comparison of analytical approximate solutions using the 

EGM (dashed line) with numerical solutions (solid line). 
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Figure (3-a): Effect of parameter N on the nonlinear frequency at  V =
5, α = 20. 

 

Figure (3-b): Effect of parameter V on the nonlinear frequency at  N =
8, α = 20. 

 

Figure (3-c): Effect of parameter α on the nonlinear frequency at  N =
10, V = 20. 

 

(a)  V = 10, α = 24. 

 

(b)  N = 10, α = 24. 

 

(c)  𝑁 = 10, 𝑉 = 10. 

Figure 4: Effects of the parameters 𝑁, 𝑉, and α on the nonlinear 
frequency:  

6. Conclusion 

This study employs the extended Galerkin method (EGM) to 

analyze the nonlinear vibration of an electrostatically actuated 

clamped-clamped microbeam, incorporating geometric 

nonlinearity from mid-plane stretching and nonlinear 

electrostatic forces. Higher-order approximate solutions are 

derived and benchmarked against numerical simulations and 

other analytical techniques, showing excellent agreement and 

enhanced accuracy in predicting frequency-amplitude 

characteristics. 

The novelty of this work lies in applying EGM to a strongly 

nonlinear MEMS configuration and extending it to higher-

order terms, enabling precise characterization of 

hardening/softening effects and resonance shifts without 

relying on small-parameter assumptions. Compared with 

existing approaches, the proposed method offers a unique 

combination of analytical simplicity, high accuracy, and 

reduced computational cost while preserving physical realism. 

The results demonstrate that EGM is a robust, efficient, and 

accurate analytical framework for modeling and optimizing 

nonlinear MEMS resonators, providing valuable guidance for 

both theoretical studies and practical device engineering. 
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