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Abstract: Insurgency remains a persistent challenge in developing nation Nigeria, where socio-political and economic factors fuel 

cycles of violence and rebellion. In this study, we develop a deterministic mathematical model to describe the spatiotemporal 

dynamics of insurgency. The population is partitioned into four interacting compartments; vulnerable individuals, active insurgents, 

security personnel, and reformed individuals. The model incorporates some important features such as ideological luring, recruitment 

through peer and cross-class influence, reform mechanisms, relapse into insurgency, and tactical neutralization. Spatial diffusion 

terms are included to simulate mobility and regional spread via a reaction-diffusion system of partial differential equations. We 

employ the Finite Difference Method hybridized with Method of Lines (MOL) time-stepping to discretize and simulate the nonlinear 

system using realistic variable and parameter values associated to terrorism in Nigeria. The model accounts for boundary conditions 

representing no external migration, and initial conditions are defined spatially. The model provides better understanding into the 

roles of vulnerability management, deradicalization, and security interventions in mitigating insurgency over time and space in 

Nigeria.  

Keywords: Vulnerability dynamics, Deradicalization, Spatial spread, Relapse mechanism, Compartmental model, Finite difference 
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1. Introduction 

The rise and persistence of insurgency in Nigeria have posed 

severe threats to national security, economic development, and 

societal cohesion. Rooted in complex socio-political, economic, 

and ideological factors. Insurgency manifests through violent 

activities, recruitment of vulnerable individuals, and the use of 

territories or hideouts to advance rebel agendas, [11]. The 

persistence of such insurgent groups, particularly in the 

northeastern and north-central regions demands rigorous 

analytical approaches for understanding, predicting, and 

controlling their spread. 

In recent years, mathematical modeling has emerged as a 

powerful tool in analyzing terrorism and insurgency. Also, [5-

7] proposed a deterministic framework capturing the behavioral 

dynamics of terrorism and probed into how control measures 

like technological intelligence can influence radicalization 

trajectories. Similarly, [3] modeled the Niger Delta insurgency 

by integrating political grievances and socio-economic 

dissatisfaction into the simulation of rebel behavior. More 

recent contributions have focused on modeling banditry and 

insurgency-control interactions. For instance, [14] developed a 

banditry mathematical model incorporating optimal 

intervention strategies, while [1] incorporated counseling and 

rehabilitation in an insurgent-security interaction modeling 

framework. 

Other models have expanded the modeling landscape to include 

arms proliferation [9], the psychological and media influence 

on terrorism [12], and control strategies using drones, [6]. In 

addition, [4] introduced insurgency effects into tuberculosis 

dynamics, emphasizing the interconnectedness of health and 

security crises. Several models have also dealt with relapse and 

recycling among ex-insurgents. [8] incorporated backward 

bifurcation to capture terrorist recycling, while [13] applied 

fractional calculus to assess long-term counterterrorism 

outcomes. In addition, [2, 10] proposed deterministic models 

for anti-banditry and terrorism control respectively by 

integrating community-level vulnerability and enforcement 

dynamics. [16] linked farmer-herder conflicts to biological 

vectors (tsetse flies) to show the cross-disciplinary complexity 

of insurgency-prone environments. Also, [15] used game theory 

approach to analyze book haram insurgency issues, while [17, 

18] used mathematical modeling to analyze insurgency 

problems in far north of Nigeria. 

Despite this growing body of work, existing models often adopt 

purely ODE frameworks, neglecting the spatial spread of 

ideology and recruitment, a core feature in real-world 
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insurgency, particularly in regions with porous borders and 

inaccessible terrain. 

This study is motivated by the pressing need to capture the 

spatiotemporal evolution of insurgency in a more realistic and 

policy-relevant manner. Unlike traditional compartmental 

models that assume well-mixed populations, we propose a 

reaction-diffusion PDE model that incorporates geographical 

spread, nonlinear recruitment, relapse dynamics, and security 

intervention mechanisms. The novelty of this work lies in: 

• Modeling relapse and recycling of reformed individuals into 

insurgency through a dynamic reintegration mechanism. 

• Incorporating spatial diffusion to simulate how insurgent 

ideologies and recruitment strategies spread across 

geographical regions or hideouts. 

• Embedding nonlinear saturating interaction terms to reflect 

peer influence, cross-sector luring, and ideological 

indoctrination. 

• Implementing a finite difference numerical scheme to 

simulate the spatial-temporal evolution of all four 

compartments (Vulnerable, Insurgents, Security Forces, 

Reformed). 

• Providing a comprehensive framework using real variable 

and parameter estimates that aligns with real conflict 

dynamics in Nigeria. 

This approach bridges the gap between local-scale behavior and 

macro-scale insurgency spread which offers a robust tool for 

intervention planning, risk assessment, and counter insurgency 

strategy evaluation. 

2. Materials and methods 

Insurgency remains one of the most pressing security 

challenges in Nigeria, with several northern regions severely 

affected by conflicts involving armed insurgents, local 

communities, and security forces. Existing models of 

insurgency often ignore the spatial dynamics of hideouts, 

camps, and tactical movements, which are crucial for designing 

localized interventions. This study develops a deterministic, and 

spatial-temporal mathematical model of insurgency using a 

nonlinear reaction-diffusion framework.  

The total population is divided into four interacting 

compartments that vary with time t and space x and later in 

space (x, y): 

The formulation incorporates: 

• Diffusion terms to capture random movement or dispersal 

across geographical space; 

• Advection (directed movement) to represent targeted 

displacement, patrol, or strategic migration of each group; 

• Nonlinear reaction terms that govern interactions between 

groups such as recruitment, relapse, suppression, and 

reintegration; 

• Spatially varying coefficients to reflect the heterogeneity of 

risk factors, governmental presence, terrain accessibility, 

socio-political influence, and intervention intensity across 

locations; 

• Saturating functions in interaction terms to ensure realistic 

bounds in recruitment and conversion dynamics. 

The model seeks to provide insight into the effectiveness of 

spatially distributed interventions, identify recruitment 

hotspots, and explore long-term patterns of insurgency spread, 

decline, or stabilization. It also serves as a tool for assessing 

policy outcomes under varying deployment strategies, 

disarmament efforts, and community-based reform initiatives. 

The system of partial differential equations is solved subject to 

spatially dependent initial conditions and homogeneous 

Neumann (no-flux) boundary conditions, ensuring population 

containment within the considered geographical domain. 

 

Vulnerable Individuals V (x, t) 

 

This class includes individuals at risk of being recruited into 

insurgency due to unemployment, injustice, marginalization, or 

peer influence. Their dynamics are governed by: 
𝜕𝑉

𝜕𝑡
= 𝐷𝑉∇2 𝑉 − ∇(𝑉𝑣𝑉) + Λ(x) −

𝛽1(𝑥)𝑉 𝐼

1+𝜅1𝐼
− (𝛿 +

𝜇)(𝑥)𝑉                                                     (1)   

                                             

Explanation of modeling flows and terms in (1) 

• 𝐷𝑉∇2 𝑉: Random spatial diffusion (e.g. migration). 

• ∇(𝑉𝑣𝑣) − Directed movement: they might move 

toward towns, job centers, or flee conflict zones. 

• Λ(x): Inflow of new vulnerable individuals (e.g., due 

to job loss, school closures). 

• 
𝛽1(𝑥)𝑉 𝐼

1+𝜅1𝐼
 : Saturated recruitment into insurgency via 

interaction with insurgents. 

• δ(x)V: Entry into reform programs (NGO work, 

education, social intervention). 

• 𝜇𝑣(𝑥)𝑉: Natural death rate. 

Active Insurgents I (x, t) 

This group comprises individuals actively participating in 

armed rebellion. Their growth arises from luring of vulnerable 

individuals, compromise of security agents, relapse of reformed 

individuals, peer radicalization, and external support: 
𝜕𝐼

𝜕𝑡
= 𝐷𝐼∇2 𝐼 − ∇(𝐼𝑣𝑖) +

𝛽1(𝑥)𝑉 𝐼

1+𝜅1𝐼
+

𝛽2(𝑥)𝑉 𝑆

1+𝜅2𝑆
−

𝛽3(𝑥)𝐼 𝑆

1+𝜅3𝑆
+

 𝜂(𝑥)𝑅 +
𝜔(𝑥)𝐼2

1+𝜅4𝐼
+ 𝜓(𝑥) − ((𝜇 + 𝜎)(𝑥))𝐼 −

𝑢𝐼(𝑥)𝐼                                        (2)                                                             
 

Explanation of modeling flows and terms in (2) 

• 𝐷𝐼∇2 𝐼: Random diffusion spread of insurgents across 

geography. 
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• ∇(𝐼𝑣𝑖): Tactical movement, often away from security 

agents. 

• 
𝛽1(𝑥)𝑉 𝐼

1+𝜅1𝐼
 : Luring or influence from vulnerable 

population. 

• 
𝛽2(𝑥)𝑉 𝑆

1+𝜅2𝑆
: Defection of security forces corrupting 

vulnerable individuals. 

• 
𝛽3(𝑥)𝐼 𝑆

1+𝜅3𝑆
: Reformation or arrest of insurgents by security 

forces. 

• 𝜂(𝑥)𝑅: Relapse of reformed individuals. 

• 
𝜔(𝑥)𝐼2

1+𝜅4𝐼
: Peer radicalization, e.g., self-organized cells. 

• 𝜓(𝑥): External support, e.g., weapons, logistics. 

• 𝜇𝐼: Natural death. 

• σ(x): Elimination via military action. 

• 𝑢𝐼(𝑥)𝐼 : Disarmament efforts (buy-back, amnesty, 

drone strikes). 

Security Forces S (x, t) 

 

This group represents the government or organized defense 

systems deployed to combat insurgents: 
𝜕𝑆

𝜕𝑡
= 𝐷𝑆∇2 𝑆 − ∇(𝑆𝑣𝑠) + α(x) − (𝛾 + 𝜇)(𝑥)𝑆 −

𝛽3(𝑥)𝐼 𝑆

1+𝜅3𝑆
−

𝑢𝑆(𝑥)𝑆                                                                      (3)                                            
 

Explanation of modeling flows and terms in (3) 

• 𝐷𝑆∇2 𝑆: Random patrol-based movement. 

• ∇(𝑆𝑣𝑠): Directed deployment e.g., toward hotspots. 

• α(x): Planned deployment by government. 

• γ(x) S: Attrition due to fatigue, injury, or desertion. 

• 𝜇(𝑥): Natural death rate 

• 𝑢𝑆(𝑥, 𝑡) Corruption or inefficiency, e.g., local  

administrative failure. 

Reformed Individuals R (x, t) 

 

These are individuals who transitioned out of insurgency 

through de-radicalization or public reform programs: 
𝜕𝑅

𝜕𝑡
= 𝐷𝑅∇2 𝑅 − ∇(𝑅𝑣𝑅) +

𝛽3(𝑥)𝐼 𝑆

1+𝜅3𝑆
+ 𝛿(𝑥)𝑉 − (𝜇 + 𝜂)(𝑥)𝑅 −

𝑢𝑅(𝑥)𝑅.                                                                  (4)                            

 

Explanation of modeling flows and terms in (4) 

• 𝐷𝑅∇2 𝑅 : Spatial diffusion (e.g., relocation, 

resettlement). 

• ∇(𝑅𝑣𝑅) : Movement toward civil zones, NGO 

programs, or schools. 

𝛽3(𝑥)𝐼 𝑆

1+𝜅3𝑆
: Reformed insurgents via security pressure. 

δ(x): Reformed vulnerable individuals via social effort. 

η(x): Relapse due to failed reintegration or societal rejection. 

𝑢𝑅(𝑥, 𝑡)𝑅: Policy failure, underfunded reform, stigma. 

 

The full system of reaction-diffusion equations is given as: 

 
𝜕𝑉

𝜕𝑡
= 𝐷𝑉∇2 𝑉 − ∇(𝑉𝑣𝑉) + Λ(x) −

𝛽1(𝑥)𝑉 𝐼

1+𝜅1𝐼
− (𝛿 +

𝜇)(𝑥)𝑉                                              ,  
𝜕𝐼

𝜕𝑡
= 𝐷𝐼∇2 𝐼 − ∇(𝐼𝑣𝑖) +

𝛽1(𝑥)𝑉 𝐼

1+𝜅1𝐼
+

𝛽2(𝑥)𝑉 𝑆

1+𝜅2𝑆
−

𝛽3(𝑥)𝐼 𝑆

1+𝜅3𝑆
+

 𝜂(𝑥)𝑅 +
𝜔(𝑥)𝐼2

1+𝜅4𝐼
+ 𝜓(𝑥) − ((𝜇 + 𝜎)(𝑥))𝐼 −

 𝑢𝐼(𝑥)𝐼                          (5)  
𝜕𝑆

𝜕𝑡
= 𝐷𝑆∇2 𝑆 − ∇(𝑆𝑣𝑠) + α(x) − (𝛾 + 𝜇)(𝑥)𝑆 −

𝛽2(𝑥)𝑉 𝑆

1+𝜅2𝑆
−

𝑢𝑆(𝑥)𝑆   
𝜕𝑅

𝜕𝑡
= 𝐷𝑅∇2 𝑅 − ∇(𝑅𝑣𝑅) +

𝛽3(𝑥)𝐼 𝑆

1+𝜅3𝑆
+ 𝛿(𝑥)𝑉 − (𝜇 + 𝜂)(𝑥)𝑅 −

𝑢𝑅(𝑥)𝑅.  
Subject to initial Conditions: 

𝑉𝑜(𝑥, 0) =  𝑉𝑜(𝑥), 𝐼𝑜(𝑥, 0) =  𝐼𝑜(𝑥), 𝑆𝑜(𝑥, 0) =  𝑆𝑜(𝑥),  (6) 
𝑅𝑜(𝑥, 0) =  𝑅𝑜(𝑥)  

And boundary Conditions (No-Flux): 
𝜕𝑉

𝜕𝑡
=

𝜕𝑉

𝜕𝑡
=

𝜕𝑉

𝜕𝑡
=

𝜕𝑉

𝜕𝑡
= 0, for 𝑥 = (0, 𝐿)            (7)                                 

 

Model Assumptions guiding (5)-(7) are as Follows: 

- The population is closed within a bounded spatial domain x ∈ 

[0, L]. 

- Recruitment into insurgency is driven by interaction between 

insurgents and vulnerable individuals. 

- A portion of security personnel may become insurgents due to 

ideological persuasion or fear. 

- Reform and relapse are possible via structured programs and 

social influence, respectively. 

- Individuals can diffuse through space, and this diffusion 

follows Fick’s law. 

- Government policies (recruitment, reform, awareness) are 

implemented uniformly over the domain. To analyze the spatial 

and temporal dynamics of insurgency and its control 

mechanisms, we adopt a reaction-diffusion framework 

involving four compartments: vulnerable individuals 𝑉, active 

insurgents 𝐼 , security forces 𝑆 , and reformed individuals 𝑅 . 

Two different computational scenarios are considered: one in a 

single spatial direction (1𝐷)  and the other in two spatial 

dimensions (2𝐷) . Both implementations are carried out in 

Python using the FDM combined with the MOL and time 

integration via SciPy's solve_ivp solver. 

 

One Dimensional Spatial Simulation 

  

In the first approach, we consider insurgency dynamics 

evolving along a single spatial axis, such as a highway or 

conflict-prone stretch of land. 

• Spatial Discretization: The domain is defined on 𝑥 ∈
[0, 100]𝑘𝑚  and discretized uniformly into 𝑁𝑥 =
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100𝑁 grid points, giving a spatial resolution of Δ x=1 

km. 

• Finite Difference Scheme: The diffusion terms 

(second-order derivatives) in each PDE are 

approximated using the standard central difference 

scheme: 

𝜕2𝑢

𝜕𝑥2 ≈
𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

∆𝑥2                             (8) 

Zero-flux (Neumann) boundary conditions are 

enforced by padding the edge values during Laplacian 

computation to ensure no population flow into or out 

of the spatial domain. 

• Initial Conditions: To capture realistic localized 

phenomena: 

o 𝑉𝑜(𝑥): Gaussian profile centered at x = 50, 

simulating an at-risk population core. 

o 𝐼𝑜(𝑥): Initiated near x = 30, representing an 

insurgency hotspot. 

o 𝑆𝑜(𝑥): Peaked at x = 70, modeling a security 

base or garrison. 

o 𝑅𝑜(𝑥) : Set to zero, allowing reformed 

individuals to emerge through system 

dynamics. 

 

• Time Integration: The method of lines (MOL) is 

applied by flattening each compartment’s spatial 

profile into a 1D vector. The resulting system of ODEs 

is integrated from 𝑡 = 0 − 100𝑡   days using the 

adaptive 4th/5th-order Runge-Kutta method (RK45) 

via SciPy's solve_ivp, with 100 time t for solution 

tracking. 

Two-Dimensional (2D) Spatial Simulation. 

 

To reflect more realistic spread patterns of insurgency across 

geographical regions, the second simulation extends the model 

to two spatial directions, x and y, capturing urban centers, rural 

corridors, and conflict diffusion dynamics. 

• Domain and Discretization: A square domain of 

50×50 km² is discretized into a uniform 30×30 grid. 

The grid spacing is Δ x = Δ y ≈ 1.72 km. 

• Laplacian Approximation: The two-dimensional 

Laplacian is approximated using a 5-point stencil finite 

difference scheme: 

 ∇2𝑈𝑖,   𝑗 ≈
𝑈𝑖+1,𝑗  +𝑈𝑖−1,𝑗+𝑈𝑖,𝑗+1+𝑈𝑖,𝑗−1−4𝑈𝑖,𝑗

∆x2 .                            (9) 

Neumann boundary conditions are applied via edge-

padding to preserve population continuity at the 

borders. 

• Initialization: 

o Vulnerable individuals 𝑉𝑜(𝑥, 𝑦): Centered at 

(25, 25) km. 

o Insurgents 𝐼𝑜(𝑥, 𝑦): Localized at (15, 15) km. 

o Security forces 𝑆𝑜(𝑥, 𝑦): Focused at (35, 35) 

km. 

o Reformed individuals 𝑅𝑜(𝑥, 𝑦) : Zero-

initialized.  

• Numerical Integration: Using the MOL strategy, 

each population matrix is flattened to a vector, and the 

coupled system is integrated using solve_ivp over 20 

days. The final solutions are reshaped and visualized 

as 3D surface plots to reveal the geographic 

distribution of each compartment at the simulation 

endpoint. 

The parameter values used in both simulations are informed by 

literature, security reports, and assumptions grounded in the 

context of insurgency-prone regions in sub-Saharan Africa, 

particularly northern Nigeria: 

 

Table 1. Variable and Parameter Descriptions and Values 

Symbol Description Value/Unit Source/Assumption 

V (x, t) Vulnerable individuals 0.05 km²/day 

/persons 

Limited passive movement (Assumed) 

I (x, t) Active insurgents 0.08 km²/day 

/persons 

High mobility of insurgents (Assumed) 

S (x, t) Security forces 0.06 km²/day 

/persons 

Active patrolling 

(Assumed) 

R (x, t) Reformed individuals 0.02 km²/day 

/persons  

Minimal movement post reform 

(Assumed) 

𝐷𝑉  Diffusion rate of vulnerable group km²/day Assumed small 

(Assumed) 

𝐷𝐼   Diffusion rate of insurgents km²/day Mobility-based 

(Assumed) 

𝐷𝑆  Diffusion rate of security forces km²/day Patrol-based 

(Assumed) 

𝐷𝑅  Diffusion rate of reformed individuals km²/day Low 
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(Assumed) 

Λ(x) Inflow rate into vulnerable which may be due to job 

loss or lack of education 

5 - 10 

persons/day 

[5-7, 10, 13] 

 

β₁(x) Luring rate of vulnerable by insurgents into 

insurgency 

0.022 person/day [5-7, 10, 13] 

β₂(x) Security compromise rate luring vulnerable 

individuals into crime of insurgency 

0.03 person/day [5-7, 10, 13] 

β₃(x) Contact rate leading to Reformation or arrest of 

insurgents by security forces  

0.24 person/day [5-7, 10, 13] 

η(x) Relapse rate of reformed individuals 0.14 person/day Assumed 

δ(x) Entry into reform programs for enlightenment 

against becoming an insurgent 

0.04 person/day Estimated 

μ(x) Natural death rate 0.1 person/day [5-7, 10, 13] 

α(x) Deployment rate of security personnel 0.001 person/day [5-7, 10, 13] 

γ(x) Attrition rate due to fatigue, injury, desertion or 

killings by insurgents 

0.22 person/day Assumed 

σ(x) Elimination of insurgents by military action 0.16 person/day [17, 18] 

ω(x) Peer influence or radicalization among insurgents 0.33 person/day Assumed 

ψ(x) External support to insurgents 0.17 person/day Assumed 

𝑘1 Saturation constant 0.23 person/day Assumed 

𝑘2 Saturation constant 0.21 person/day Assumed 

𝑘3 Saturation constant 0.22 person/day Assumed 

𝑘4 Saturation constant 0.24 person/day Assumed 

𝑢𝐼 Disarmament rate  0.14 person/day Assumed 

𝑢𝑆 Corruption or inefficiency rate 0.11 person/day Assumed 

𝑢𝑅 Policy failure or underfunded reform rate 0.13 person/day Assumed 

 

3. Results and Discussion: 

After numerical integration, the model state variables were 

extracted at the final simulation time and plotted as spatial 

distributions. These plots revealed the emergence of insurgency 

hotspots, spread of vulnerability, deployment of security, and 

localized success of reform programs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. One dimensional spatial distribution of population compartments: (a) Vulnerable individuals V(x, t), (b) Insurgents I(x, 

t), (c) Security forces S(x, t) and (d) Reformed individuals R(x, t) at t = 50 days across the domain x∈[0,100] km. 
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In view of the one-dimensional spatial domain, Figure 1 

presents the simulation results of the proposed 

spatiotemporal insurgency model at the final time point t 

= 100 days, showing the dynamics of each compartment 

across the one-dimensional spatial domain. 

The first upper left sub-figure illustrates the distribution 

of vulnerable individuals V (x, t), where there is a 

significant depression in population density between x = 

25 km and x = 50 km. This decline shows regions where 

intense recruitment into insurgency has occurred due to 

high insurgent presence. On the other hand, elevated 

values at the domain edges reflect lower exposure and 

thus sustained vulnerability. 

The upper left sub-figure displays the profile of active 

insurgents I (x, t), revealing a sharp peak around x = 30 

km, with population levels exceeding 20,000. This 

concentration reflects the epicenter of insurgent activity, 

sustained by successful recruitment of vulnerable 

individuals, compromise of security personnel, relapse of 

reformed individuals, and external support mechanisms. 

The sharpness of the peak suggests a highly localized but 

powerful insurgent presence. 

The lower left sub-figure shows the spatial distribution of 

security forces S (x, t), which peaks around x=70 km. The 

spatial offset between the insurgent and security force 

peaks suggests a suboptimal deployment strategy or 

delayed response. The relatively flat gradient in other 

regions indicates limited mobility and diffusion, which 

may hinder effective engagement with insurgent 

strongholds. 

The lower left sub-figure depicts the evolution of the 

reformed population R (x, t) peaking near the insurgent-

dense region at (x) =30 km. This alignment reflects 

successful de-radicalization efforts where insurgency is 

most severe. However, the magnitude of this peak is 

significantly lower than that of insurgents, indicating that 

reform interventions, while functional, are yet insufficient 

to counteract the scale of radicalization. 

Important observations as regards Figure 1. 

• Localized Dynamics:Insurgency remains highly 

concentrated in specific zones, validating the use 

of spatially explicit modeling to capture 

asymmetric conflict behavior. 

• Security Mismatch: There is an evident spatial 

lag in security force presence relative to 

insurgent hotspots, which may reduce the 

effectiveness of counterinsurgency efforts. 

• Policy Implications: Strategic redeployment of 

security forces toward high-insurgency zones, 

along with increased reform and preventive 

outreach in vulnerable regions, could 

significantly suppress insurgent growth. 

• Model Validation: The results align with real 

data estimation observations in regions affected 

by insurgency, such as northern Nigeria and 

parts of the Middle Belt, where insurgent activity 

tends to cluster and exploit socio-economic 

vulnerabilities. 

 

 
Figure 2: 2 dimensional spatial distributions of 

the vulnerable model compartment V at time t = 

50 days across a 100 km domain. 

 
Figure 3: 2 dimensional spatial distributions of 

insurgent model compartment I at time t = 50 days 

across a 100 km domain. 
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Figure 4: 2 dimensional spatial distributions of 

security forces S model compartment at time t = 

50 days across a 100 km domain. 

 

 

 

 

Figure 5: 2 dimensional spatial distributions of 

reformed model compartment R at time t = 50 

days across a 100 km domain. 

In view of the 2-dimensional domain analysis, Figures 2, 3, 4 

and 5 displays the final spatial distributions of insurgency model 

compartments at time t = 50 days across a 100 km domain. 

Figure 2, displays the profile of vulnerable individuals 

𝑉(𝑥, 𝑦, 𝑡), which peaks around the mid-point (x, y) = 50 km, 

showing the initial hotspot of socio-economic vulnerability. 

Over time, vulnerability has slightly diffused outward but 

remains concentrated by indicating limited spread due to 

moderate diffusion 𝐷𝑉 = 0.05  and ongoing recruitment into 

insurgency or reform. The effect of luring 𝛽1(𝑥, 𝑦)  and 

empowerment 𝛿(𝑥, 𝑦)  appears significant, but not enough to 

exhaust the vulnerable pool. 

Figure 3 shows the insurgent population 𝐼(𝑥, 𝑦, 𝑡) ,  initially 

located at (𝑥, 𝑦) = 30 km has propagated and grown to form a 

broad hump across the region. This behavior stems from 

sustained recruitment from both vulnerable and compromised 

security agents 𝛽1(𝑥, 𝑦), 𝛽2(𝑥, 𝑦)  as well as self-radicalization 

𝜔 and external support 𝜓(𝑥, 𝑦) . However, the population 

declines at the boundaries due to security suppression and 

natural decay 𝜇(𝑥, 𝑦), and σ(x, y) . The plot reveals multiple 

influence zones rather than a single concentrated cell. 

Figure 4 shows that the security force distribution 𝑆(𝑥, 𝑦, 𝑡) 

remains relatively stable around the initial location (𝑥, 𝑦) = 70 

km, with some mild spatial dispersion due to patrol diffusion 𝐷𝑆. 

The slow attrition rate 𝛾(𝑥, 𝑦) and constant recruitment 𝛼(𝑥, 𝑦)  

to ensure their presence is maintained. However, the failure to 

significantly penetrate insurgent regions suggests either weak 

spatial deployment or overwhelming opposition in those zones. 

Finally, Figure 5, showed that, the reformed class 𝑅(𝑥, 𝑦, 𝑡)  

which started at zero, gradually builds up across the domain, 

with visible peaks where insurgents and vulnerable populations 

overlap. This confirms that effective reform policies 𝛽3(𝑥, 𝑦) 

and empowerment 𝛿(𝑥, 𝑦) are driving transitions from conflict 

to peace. The presence of relapse η(x, y) slightly offsets this 

trend but does not dominate. 

4. Conclusion 

This study presents a novel spatiotemporal reaction-diffusion 

model for analyzing the dynamics of insurgency in conflict-

prone regions in Nigeria. By incorporating four critical 

compartments namely vulnerable individuals, active insurgents, 

security forces, and reformed individuals. The model illustrates 

the intricate interplay between socio-political vulnerabilities, 

recruitment, spatial diffusion, and policy interventions. Through 

a combination of one-dimensional and two-dimensional 

simulations using FDM and time integration via the MOL, the 

framework successfully reveals how insurgency evolves both 

temporally and spatially. 

The results from the 1D simulation reveal a highly localized 

insurgent buildup around the mid-domain ((x, y) ≈ 30 km), 

heavily sustained by vulnerable populations, peer influence, and 

external support. The corresponding lag in the deployment of 

security forces, peaking instead at (x, y) ≈ 70 km, underscores a 

critical spatial mismatch that weakens the effectiveness of 

counterinsurgency strategies. While the reformed class emerges 

near the insurgent core, its magnitude remains inadequate to 

counterbalance the radicalization momentum. 

The 2-dimensional model further demonstrates how insurgency 

diffuses across both spatial directions, generating regional 

conflict cells influenced by the initial positioning of 

vulnerabilities and security response. Vulnerable and insurgent 

populations tend to cluster in overlapping regions, while 

security presence often trails behind or remains static, limiting 

its suppressive capacity. Reform interventions, though positive, 

appear spatially constrained and partially reactive rather than 

preventive. 
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From these findings, several key conclusions emerge: 

• Spatial Heterogeneity Matters: Insurgency is not uniformly 

distributed; rather, it forms clustered hotspots. Therefore, 

further models must go beyond temporal averages to include 

spatial variability in both populations and interventions. 

• Insufficient Security Penetration:  

Despite ongoing recruitment, the spatial positioning of 

security forces does not effectively overlap with insurgent 

hotspots. This diminishes counterinsurgency impact and 

highlights the need for geographically informed 

redeployment strategies. 

• Reactive Reform Is Inadequate: Although reform efforts 

yield results, they remain spatially and quantitatively 

insufficient. Reliance on post-insurgency reform without 

adequate pre-emptive empowerment may fail to neutralize 

radicalization cycles. 

• Systemic Feedback Loops Are Crucial: Nonlinear 

interactions such as relapse, self-radicalization, and 

recruitment from compromised security agents reinforce the 

persistence of insurgency. These dynamics must be 

accounted for in any long-term stabilization strategy. 

The following recommendations are posed to policy makers. 

• Geographically Targeted Security Deployment: Security 

resources should be dynamically allocated based on spatial 

intelligence to ensure that presence aligns with insurgent 

concentrations. The current static or lagging deployment 

weakens operational outcomes. 

• Community-Based Prevention Programs: Vulnerable 

hotspots identified by the model (e.g., the central domain) 

require intensive socio-economic support, job creation, 

education, and grievance redress to reduce recruitment 

potential. 

• Decentralized Reform Centers: Rehabilitation and 

reintegration efforts should be spatially dispersed and closer 

to insurgent hubs to effectively convert active members and 

reduce relapse. 

• Integration of Real-Time Spatial Data: Policy design should 

be supported by geospatial insurgency tracking and 

modeling to update intervention zones dynamically, rather 

than relying solely on static strategies. 

• Further Model Extensions: Future work should incorporate 

more detailed factors such as terrain, population density, 

displacement dynamics, and stochastic effects to capture 

real-world irregularities and improve forecasting. 
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