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Abstract:

In this paper, we examine two crucial aspects of quantum information processing: the dynamics of entanglement in
atom-field interactions and the fidelity of quantum teleportation under nonlinear effects. We analyze entanglement and
quantum entropic uncertainty in a system of two-level atoms coupled to a Fock-state cavity field, taking into account the
effects of the Kerr medium and the Stark shift. Our findings reveal phenomena such as entanglement, sudden death, and
revival, with these occurrences becoming more frequent at higher Kerr and Stark parameters. Furthermore, we investigate
the dynamics of average fidelity in a quantum teleportation protocol, focusing on the roles of the input state angle θ and
the nonlinear coupling strength χ1. Fideism exhibits periodic behavior, achieving optimal values in specific parameter
settings, particularly when θ = π . These insights significantly enhance our understanding of quantum entanglement
control and high-fidelity teleportation, which are essential for advancing quantum communication, cryptography, and
measurement protocols.

Keywords: Witness of entanglement, Entropic Uncertainty, Kerr medium, Fidelity, Teleportation.

1 Introduction

The uncertainty principle lies at the heart of quantum
mechanics, providing a foundational distinction
between classical and quantum behavior. It can be
formulated in two primary ways. The first is
Heisenberg’s uncertainty principle, which quantifies
the product of the standard deviations of two
noncommuting observables M and N as
∆M ·∆N ≥ 1

2 |⟨[M,N]⟩| [1]. This relation emphasizes
the fundamental limit to the precision with which two
incompatible observables can be known
simultaneously.

The second formulation is the entropic uncertainty
relation, which utilizes Shannon entropy to express
uncertainty in measurement outcomes [2,3,4]. For a
result of measurement z from a probability
distribution p(z), the Shannon entropy is defined as
S(Z) = −∑l pl(z) log2 pl(z). For two incompatible
observables M and N, the entropic uncertainty
relation takes the form S(M) + S(N) ≥ log2

( 1
c

)
,

where 1/c represents the complementarity of the
observables and is given by c ≡ maxr,s |⟨ϕr|ψs⟩|2,
with |ϕr⟩ and |ψs⟩ being the eigenvectors of M and N,
respectively.

A more general formulation of this principle,
incorporating quantum memory, has been proposed
in [5] as:

S(M|B)+S(N|B)≥ log2

(
1
c

)
+S(A|B), (1)

where S(A|B) = S(ρAB)−S(ρB) is the conditional von
Neumann entropy. The quantum memory-assisted
entropic uncertainty relation has attracted significant
attention for its role in understanding quantum
correlations and information processing in open
quantum systems [6,7]. Quantum memory-assisted
entropic uncertainty, Jensen-Shannon coherence, and
entanglement dynamics in a graphene sheet with
disordered electrons affected by intrinsic decoherence
were studied [8]. Entropy uncertainty relations
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considering quantum memory and entanglement for
non-orthogonal states built from two-qubit coherent
states were analyzed [9]. The entropic uncertainty
relations and quantum coherence in the
two-dimensional XXZ spin model with
Dzyaloshinskii–Moriya interaction were investigated
[10]. The relation between the quantum
memory-assisted entropic uncertainty relation and the
quantum phase transition in the spin XXZ model was
examined. The results indicate that the entropic
uncertainty and its lower bound exhibit similar
characteristics [11]. One of the most intriguing
quantum phenomena underpinning modern quantum
technologies is entanglement [12,13,14,15]. It plays a
central role in quantum teleportation, quantum dense
coding, quantum key distribution, and quantum
computing [16,17,18,19,20,21,22]. However,
entanglement is often fragile in realistic settings as a
result of decoherence and dissipation from the
environment. Consequently, preserving entanglement
in open systems has become a critical area of research
[23,24]. The entropic uncertainty principle has also
been shown to be effective in detecting entanglement
in various system-reservoir configurations [25].

In recent studies, the lower bound of the entropic
uncertainty relation has been applied to examine the
dynamics of entanglement in atomic systems coupled
to non-Markovian reservoirs [26]. Further
investigations have demonstrated connections
between entropic uncertainty, quantum memory, and
entanglement witness criteria. Numerous works have
also explored the role of external influences such as
Stark shifts, Kerr nonlinearity, multiphoton
transitions, and intensity-dependent coupling in
preserving entanglement [26,27,28,29,30,31,32,33,
34,35].

In addition to entanglement, quantum
teleportation serves as a fundamental protocol in
quantum information theory, enabling the transfer of
unknown quantum states using previously shared
entanglement and classical communication [36,37].
The success of teleportation protocols is closely
related to the fidelity of the transmitted state, which in
turn depends on the quality of the shared entangled
resource and the dynamical parameters of the system
[38]. Studying teleportation fidelity in systems
affected by nonlinear interactions, such as Stark shifts
and Kerr media, provides valuable information on
optimizing performance on realistic experimental
platforms [39].

The main objective of this work is to explore how
entropic uncertainty and entanglement behave in a
two-atom cavity QED system and to investigate the
performance of quantum teleportation using the same
physical setup. We use the lower bound of the
entropic uncertainty relation and concurrence as tools
to characterize entanglement and its temporal
evolution. Furthermore, we study how the
teleportation fidelity varies with the system
parameters, including input state angles and nonlinear
coupling strengths.

This paper is organized as follows. Section 2
describes the physical model and presents the solution
of the system dynamics. Section 3 outlines the
entropic uncertainty framework. In Section 4, we
investigate the influence of the Stark shift and Kerr
medium on the witness to entanglement. Section 5
presents an analysis of the average teleportation
fidelity within the same model. Finally, Section 6
concludes the paper with a discussion of our key
findings.

2 The model and its solution

We use two-level atoms (A and B) and a single-mode
cavity assisted by a nonlinear Kerr-like medium in our
physical model. The two atoms are noninteracting and
resonantly coupled with the single-mode cavity field.
|e⟩ and |g⟩ will be used to mark the excited and ground
states of each atom, respectively. The Hamiltonian of
the system can be written as (= 1) [40,41,42,43]:

Hint = ∑
j=A,B

[a†a(β2σ
+
j σ

−
j +β1σ

−
j σ

+
j )

+ g(a†2
σ
−
j +a2

σ
+
j )]+χa†2

a2, (2)

The photon generation (annihilation) operator in
cavity mode is a†(a), and the Stark shift parameters
are β2 and β1. g controls the strength of the
two-photon coupling between the atoms and the
cavity. Furthermore, χ is the dispersive component in
a third-order Kerr-like medium. σ

+
j and σ

−
j describe

the raising and lowering operations, respectively. In
Eq.2, σ

+
j and σ

−
j denote raising and lowering

operations and are given by:
σ
+
j = |e⟩ j j⟨g| and σ

−
j = |g⟩ j j⟨e| for a jth

two-dimensional atom. If the two atoms are initially
formed in a maximally entangled state, they can be
expressed in the form of Bell’s state, which is
|Ψatom(0)⟩ = 1√

2
(|eg⟩+ |ge⟩), if only a single photon

is involved. This indicates that the cavity field is first
defined by a Fock state, |1⟩. Finally, the whole initial
state of the model can be expressed as follows:

|Ψ(0)⟩= 1√
2
(|eg⟩+ |ge⟩)⊗|1⟩. (3)

The time-dependent wave function for the current
physical mode of the Fock state cavity and coupled
atom is derived using the Schrodinger approach as:

|Ψ(t)⟩= α1|eg1⟩+α2|ge1⟩+α3|gg3⟩, (4)

with probability amplitudes.

α1 = α2 =
1√
2η

exp
[
−1

2
igtκ

]
(η cos

[
1
2

gtη
]

+ i(5γ1 − γ2 +6χ1)sin
[

1
2

gtη
]
),

α3 =
−4

√
3i

η
exp

[
−1

2
igtκ

]
sin

[
1
2

gtη
]
, (5)
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where
η =

√
(5γ1 +6χ1)2 − γ2 +48,κ = 6χ1 + γ2 +7γ1 and

γ1 =
β1
g , χ1 =

χ

g and γ2 =
β2
g . Using the field variables

and taking the trace of the state given by Eq.(4), we
get the statistical ensemble state of the atom-atom
system ρAB(t). On a standard basis |ee⟩, |ge⟩, |eg⟩ and
|gg⟩, the relative atom-atom density ensemble ρAB(t)
takes the form of:

ρAB =

0 0 0 0
0 ρ̂22 ρ̂23 0
0 ρ̂32 ρ̂33 0
0 0 0 ρ̂44

 (6)

where

ρ̂22 = |α1|2 , ρ̂33 = |α2|2 , ρ̂44 = |α3|2 ,
ρ̂23 = α1α

∗
2 , ρ̂32 = ρ̂

∗
23. (7)

3 The entropic uncertainty relation when
related to a non-local memory

According to Eq. (1), we order M = σx and N = σy

S(σx|B)+S(σy|B)≥ S(A|B)+ log2(
1
c
), (8)

where, for the states ρ̂AB, ρ̂σxB and ρ̂σyB, the
corresponding von Neumann conditional entropies
can be expressed as:

S(A|B) =−S(ρ̂B)+S(ρ̂AB), (9)
S(σx|B) =−S(ρ̂B)+S(ρ̂σxB), (10)
S(σy|B) =−S(ρ̂B)+S(ρ̂σyB). (11)

In addition, S(ρ̂) is the von Neumann entropy, which
can be computed using:

S(ρ̂) =− tr(ρ̂ log2 ρ̂) = ∑
j

η j log2 η j, (12)

Note that we express the corresponding eigenvalues
η j of the density matrix ρ̂ . The states ρ̂σxB and ρ̂σyB
are the post-measurement states after σx and σy are
performed on the atom A, that is,
ρ̂σxB = ∑m(|ψm⟩⟨ψm| ⊗ IB)ρ̂AB(|ψm⟩⟨ψm| ⊗ IB) and
ρ̂σyB = ∑n(|ϕn⟩⟨ϕn|⊗ IB)ρ̂AB(|ϕn⟩⟨ϕn|⊗ IB), in which
|ψm⟩ and |ϕn⟩ are eigenvectors of σx and σy,
respectively, c ≡ maxm,n |⟨ϕm|ψn⟩|2 = 1

2 . However, if
A and B are disentangled, then S(A|B) ≥ 0 along with
S(A|B) log2(1/c) ≥ 1. Thus, the entanglement
between A and B is entirely dependent on the lower
bound of the entropic uncertainty relations. As a
result, the right-hand side of the inequality can
capture the entanglement (8). This means that the
entanglement between A and B exists only if
S(A|B)+ log2(1/c)< 1.

4 Numerical results and discussion

For the estimation of the entanglement in the current
study, we choose the Wootters concurrence defined as
[44,45]:

C = max
(

0,
√

L4 −
√

L3 −
√

L2 −
√

L1

)
, (13)

where, Li are the eigenvalues of the matrix˜̂ρ = ρ̂AB(σy ⊗ σy)ρ̂
∗
AB(σy ⊗ σy) in decreasing order.

Using Eq. (6), the concurrence can be put into the
form:

C = 2max[0, |ρ̂23|]. (14)

In addition, we set MU to represent the minimum
entropic uncertainty computed on the right-hand side
of the inequality (8). The time intervals of robustness
to the entanglement witnessed are indicated by (TEW )
under the condition MU < 1. The term (CEW ) is used
to show the degree of entanglement of the witness
under the given condition of MU < 1. From the
density matrix in Eq. (6), we get

MU = 1− (ρ̂44 log2[ρ̂44]+ ε1 log2[ε1]+ ε2 log2[ε2]

− ρ̂33 log2[ρ̂33]− (ρ̂44 + ρ̂22) log[ρ̂44 + ρ̂22]),(15)

where,
ε± = 1

2

(
ρ̂33 + ρ̂22 ±

√
(−ρ̂33)2 +4|ρ̂23|2 + ρ̂22

)
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Figure 1: The dynamics of minimum uncertainty (MU
solid-red) and concurrence (C dashed-blue) against gt,
when γ1 = γ2 = χ1 = 0.

In Fig. 1, we present MU(solid-red) and
C(dashed-blue) versus gt with the parameters set to
γ1 = γ2 = χ1 = 0, when Stark shift effects and Kerr
medium actions are absent. We observe that C decays
from maximum to minimum values with a revival
character as time t passes. The MU metric, on the
other hand, has been revealed to have an inverse
growth function, rising from a minimum to a
maximum value (i.e., 1.27). The MU metric, like C, is
showing indications of revival. This means that
entanglement loss and entropy increase will be
reversed under current conditions, and the state will
become entangled and pure once more. This
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contradicts the behavior of quantum systems coupled
to local environments given in [46,47,48]. In actual
quantum information processing, this could be
advantageous for sharing information between the
system and the environment, resulting in a prolonged
preservation of the entanglement. Interestingly, in the
interval of time t ∈

[
0, π√

3

]
there are three time zones

and they are TEW1 ∈
[
0, 1π

10
√

3

]
, TEW2 ∈

[
4π

10
√

3
, 6π

10
√

3

]
and TEW3 ∈

[
9π

10
√

3
, π√

3

]
. The entanglement between A

and B can be seen in these different time zones by
MU1 being the same; there is always
CEW =∈ [0.686,1]. The current entropic uncertainty
investigations and dynamical maps are completely
different from those found in [49,50].
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Figure 2: The dynamics of minimum uncertainty (MU
solid-red) and concurrence (C dashed-blue) versus gt,
with χ1 = 0, (a)γ1 = γ2 = 4 and (b) γ1 = γ2 = 6.

In Fig. 2, we describe the influences of the Stark
shift on MU and C versus gt. In agreement with Fig.1,
we find both the C and MU measures to grow
oppositely at comparable times. Fig.2-(a) shows that
when we set γ1 = γ2 = 4, C first decays from 1 to 0.57
and then oscillates between the maximum and
minimum values. In addition, MU increases from zero

to 1.123 and then shows revivals for the increasing
choices of t. Comparing Fig.1 and Fig.2-a, it is easy
to deduce that the corresponding dynamical maps are
similar, but revival entanglement and entropic
uncertainty are more dominant in the current case.
Unlike Fig.1, we noticed that four different time
zones using MU are TEW1 ∈

[
0, 11π

10
√

3

]
,

TEW2 ∈
[

215π

1000
√

3
, 44π

100
√

3

]
,TEW3 ∈

[
544π

1000
√

3
, 77π

100
√

3

]
. and

TEW4 ∈
[

87π

100
√

3
, π√

3

]
, there is always

CEW =∈ [0.668,1]. The number of time zones
detected by MU expands when the Stark shift
increases, allowing the entanglement between A and B
to be observed using the lower bound of the entropic
uncertainty relation, while CEW remains invariant.
This entropic uncertainty behaviour is against that
shown in [51,52]. By increasing the Stark shift as
shown in Fig.2-b, MU can detect the entanglement
between A and B at any time. These time zones and
entanglement revivals without complete suppression
are completely lacking in local external fields, as seen
in [53,54]. For our system under consideration, the
critical values of the Stark shift at which the
entanglement between A and B may be noticed by
MU are γ1 = γ2 = 4.88.

TEW1 TEW2 TEW3

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

gt

M
U

,C

(a)

TEW

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

gt

M
U

,C

(b)

Figure 3: The dynamics of minimum uncertainty (MU
solid-red) and concurrence (C dashed-blue) versus gt,
with γ1 = γ2 = 0, (a) χ1 = 1, and (b) χ1 = 2.
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In Fig.3, we analyze the impact of the Kerr
medium on dynamical maps of MU and C. In Fig.3-a,
we assign χ/g = 1 and as time passes, we notice the
C and MU measures growing or decreasing random
functions of entanglement and entropic uncertainty. In
addition, MU increases from a minimum to a
maximum value of 1.123, but C decreases from a
maximum to a minimum of 0.425. Both the C and
MU measures show revivals of entanglement and
entropic uncertainty and agree with Figs.1 and 2.
There are three time zones; they are
TEW1 ∈

[
0, 11π

100
√

3

]
, TEW2 ∈

[
276π

1000
√

3
, 482π

1000
√

3

]
, and

TEW3 ∈
[

653π

1000
√

3
, 86π

100
√

3

]
, and the entanglement is

observed when MU < 1 and in agreement with the
previous Fig.1 and 2, CEW =∈ [0.668,1]. However, in
Fig. 3b, we increase the Kerr medium ( chi1 = 2) by
increasing the time that oscillations occur in MU and
C, and MU witnesses the entanglement during all
times. The critical value of the Kerr medium in which
we can obtain the entanglement encountered by MU
is χ1 = 1.63, which deviates in fact from the studies
given in [49,50,51,52]. By comparing Fig.2 and Fig.
3, it can be easily deduced that the dynamical maps of
MU and C agree with each other. This means that the
effects of the Stark shift, in addition to the Kerr
medium, have the same impact on the time evolution
of MU and C. However, for the different parameter
values of both γ1,γ2 and χ1. Our results show that we
can obtain the time zones in which the entanglement
witnessed by MU during all time increases by
increasing the values of the Stark shift effect and the
Kerr medium, which contradicts the intrinsic
characters of local fields given in [46,47,48,53,54].
However, slight entanglement revivals were detected
in different types of non-local systems and cavity
interactions as given in [49,50]. Also, the critical
value of the Kerr medium in which entanglement
witnessed by MU during all time is less than the value
of the Stark shift.

5 Quantum Teleportation

Quantum teleportation is one of the most well-known
topics in quantum information theory, and its goal is
to teleport an arbitrary quantum state [36]. The story
of quantum teleportation is that Alice wishes to send
an arbitrary quantum state to Bob. They agreed to use
a quantum channel by a pair of entangled states and
share it between themselves. Fidelity and average
fidelity are two efficient measures that help us to
determine the quality of teleportation [37]. We are
interested in how close the output state is to the initial
state. For an arbitrary two-qubit pure state, the input
unknown state can be considered as

|Ψin⟩= cos(
θ

2
)|eg⟩+ eiφ sin(

θ

2
)|ge⟩. (16)

with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π , where θ and φ are
the amplitude and phase of the state, respectively.

Then, the output state is defined as

ρout = ∑
i, j=0,x,y,z

Pi, j(σi ⊗σ j)ρin(σi ⊗σ j), (17)

where ρin = |Ψin⟩⟨Ψin|, σ0 ≡ I is the identity matrix
and σi, j(i, j = x,y,z) are the Pauli matrices,
Pi, j = Tr

[
γ iρch

]
Tr

[
γ jρch

]
in which ∑i, j Pi, j = 1,

γ0 = |Ψ−⟩⟨Ψ−|, γ1 = |Φ−⟩⟨Φ−|, γ2 = |Φ+⟩⟨Φ+|
and γ3 = |Ψ+⟩⟨Ψ+| with Bell states |Φ±⟩ and |Ψ±⟩
[55,56]. Herein, we consider the density operator of
the channel as ρch ≡ ρAB(t).
Now, we can obtain the output density matrix in the
following form.

ρout =

ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
0 0 0 ρ44

 , (18)

where

ρ11 = 0, ρ22 = |α1|2, ρ33 = |α2|2, ρ44 = |α3|2, ρ23 =α
∗
1 α2.

The quality of the teleported state is characterized by
the fidelity measure F (ρin,ρout), defined as [37].

F (ρin,ρout) =

[
Tr

(√
(ρin)1/2ρout(ρin)1/2

)]2

,

(19)
On the other hand, the average fidelity of teleportation
FA can be formulated as

FA :=
1

4π

∫ 2π

0
dφ

∫
π

0
F (ρin,ρout)sin(θ)dθ . (20)

Hence, one can obtain the analytical expression of
the average fidelity of teleportation for our case as
follows.

FA =
1
2

(
|α3|2 − (|α3|−2|α1|)cos2(θ)

+4|α1|2
(
1+ sin2(θ)

))
. (21)
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Figure 4: Time evolution of average fidelity as a
function of gt when γ1 = 0.1, γ2 = 0.5 and χ1 = 0.05.

Fidelity is a crucial metric in quantum
teleportation that quantifies the closeness between the
teleported state and the original input state. A fidelity
of 100% indicates perfect teleportation. Figures 4
and 5 systematically explore how fidelity evolves (gt)
under different values of the input state angle θ , and
the coupling parameter χ1.

Figure 4 illustrates the time evolution of the
average fidelity in a quantum teleportation protocol as
a function of scaled time gt, with fixed parameters
γ1 = 0.1, γ2 = 0.5, and χ1 = 0.05. Figure 4 (a)
presents the dynamics of fidelity for three selected
values of the input state angle θ , while figure 4 (b)
shows a 3D surface plot of fidelity as a function of
both gt and θ . Figure 4 (a) shows the evolution of
fidelity for three different input state angles: θ = π

4
(blue), π

2 (red) and π (black). A key observation is
that all three curves reach identical peaks at specific
time intervals, indicating periodic behavior in fidelity
regardless of the initial state angle. However, the
minimum fidelity values between peaks differ
significantly. Specifically, the highest fidelity is
achieved for θ = π , suggesting that this input state is
optimal for reliable teleportation. In contrast, θ = π

4
produces the lowest fidelity in the valleys,
emphasizing the importance of input state selection.
Figure 4(b) illustrates the joint dependence of fidelity
on both gt and θ . It confirms the periodic time

dependence and highlights the sensitivity of fidelity to
the input angle. High-fidelity regions appear
periodically in both dimensions, indicating specific
combinations of time and angle that optimize
teleportation success. This analysis underlines the
practical importance of parameter tuning in real-world
quantum teleportation systems, particularly in setups
influenced by nonlinear interactions such as Stark
shifts and Kerr media [57,29,58,59,60].

Figure 5(a) shows the fidelity for different values
of the non-linear coupling parameter χ1 = 0 (blue), 0.5
(red) and 1 (black), with γ1 = 0.1, γ2 = 0.5 and θ = π

4
kept constant.

As χ1 increases, the fidelity profiles change both
in amplitude and frequency. In particular, for χ1 = 1,
the fidelity achieves higher peaks compared to smaller
values of χ1. These variations suggest that the
interaction strength introduces nontrivial
modifications to the teleportation dynamics.

Figure 5(b) illustrates the fidelity as a function of
gt and χ1. The plot reveals periodic high-fidelity
regions that depend on the strength and timing of the
interaction. The nonlinear coupling parameter χ1
significantly influences the fidelity of the
teleportation, and the tuning χ1 can be used as a
control mechanism to optimize performance.

( 1=0)

( 1=0.5)

( 1=1)

��� ��� ��� ��� ���
�

��

��

��

��

���

	


�
��
�
���
�
[%

]

(a)

(b)

Figure 5: Time evolution of average fidelity as a
function of gt when γ1 = 0.1, γ2 = 0.5 and θ = π

4 .
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6 Conclusion

We have analyzed the dynamics of entanglement and
entropic uncertainty in a system of two-level atoms
interacting with a single-mode Fock state cavity field,
both with and without the influence of the Kerr
medium and Stark shift. Using concurrence and the
lower bound of the quantum entropic uncertainty
relation, we observed that entanglement undergoes
sudden death and revival, rather than complete decay.
The frequency of these entanglement revivals
increases with higher values of the Kerr and Stark
parameters, allowing for time regions where
entanglement persists with minimal uncertainty.

Entropy, similar to entanglement, exhibits revivals
and avoids permanent increase, reinforcing the
system’s resilience. These time-dependent behaviors
provide a framework for engineering stable entangled
states and minimizing information loss in quantum
systems. The identified parameter regimes and time
zones offer practical strategies for enhancing
performance in quantum measurement, cryptography,
and information processing. We examined average
fidelity in a quantum teleportation protocol under
nonlinear interactions. We found that increasing the
angle of input state θ , particularly to π , and tuning the
nonlinear coupling parameter χ1, significantly
improves fidelity. The fidelity shows a periodic
dependence on the scaled time gt, highlighting the
importance of precise parameter control and timing.
Finally, our results provide valuable insights for
designing robust quantum communication systems,
where both entanglement dynamics and teleportation
fidelity can be optimized through proper manipulation
of physical parameters.
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