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Abstract:

In life-testing experiments, generalized hybrid Type-I censoring scheme (GHTCS) has been adopted to enhance the
statistical efficiency of estimators. The core focus of this article is to extensively tackle the critical matter of estimation
the model parameters and the parameters of life (reliability and hazard rate functions) for a new Pareto-type distribution
(NPD) based on GHTCS. Initially, the model parameters as well as the parameters of life are estimated by maximum
likelihood method and the corresponding approximate confidence intervals are constructed with respected to the observed
Fisher information matrix. To address scenarios where sample sizes are small, confidence intervals are created by
employing the percentile bootstrap method. In addition, the point and credible intervals estimate of parameters are
constructed with respect to symmetric squared error loss Bayes method. To provide a robust and efficient framework for
accurate estimation the approximate Bayes estimators are computed under the technique of Markov chain Monte Carlo
(MCMC). The efficiency of estimators and comparative analysis of their performance are assessed under constructed the
comprehensive simulation study. Ultimately, the application of the estimators is demonstrated through the analysis a set
of real data.
keywords: GHTCS, a new Pareto-type distribution, delta method, bootstrap method, Bayesian estimation, MCMC,
importance sampling.

1 Introduction

1.1 A new Pareto-type distribution

Pareto, the eminent scholar, revolutionized the realm
of economic analysis by introducing the illustrious
Pareto distribution as an exemplary model for income
distribution Ref. [1]. Distinguished by its remarkable
skewness and a profound heavy tail, this distribution
remains a pillar in comprehending economic
dynamics. Its versatile application has extended to a
multitude of domains, encompassing the analysis of
extreme environmental events, Changes in insurance
claims or financial information, and the evaluation of
reliability in diverse contexts. Pareto distribution is
also used to predict the lifetime of produced goods
with defined guarantee durations. Several books,
including those by, Refs. [2–4] have effectively
covered the areas of application for the Pareto
distribution. Over the past 20 years, numerous
investigations on the Pareto distribution have been
carried out by different authors, specifically on the
estimation and prediction of its parameters. These
studies can be seen in articles such as, Refs. [5–10].

In a remarkable advancement, authors of Ref. [11]
have introduced a pioneering Pareto-type (NP)
distribution that revolutionizes the modeling of
income and reliability data. This remarkable
development serves as an exceptional generalization
of the renowned Pareto distribution, significantly
expanding the scope and accuracy of data analysis in
diverse fields. Let X be a random variable. It has the
NP distribution with shape parameter α and scale
parameter λ . The following is an expression for X’s
PDF (probability density function);

f (x) = 2αλ
α x−(α+1)(1+(

λ

x
)α)−2, x ≥ λ . (1)

The random variable X’s CDF can be shown as;

F(x) = 1−
2(λ

x )
α

1+(λ

x )
α
. (2)

The PDF and CDF enable us to obtain the expressions
for the reliability function (RF) and the hazard rate
function (HRF) as follows;

R(t) =
2λ α t−α

1+(λ

t )
α
, t > 0, (3)
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and

H(t) =
αt−1

1+(λ

t )
α
, t > 0. (4)

The plots in Figs.1 and 2 demonstrate the PDF and
HRF of the NP distribution for different values of the
shape parameter α , while keeping the scale parameter
λ fixed at 1.

As highlighted in [11, 12], the PDF of the NP
distribution that decreases for x ≥ λ > 0. If α > 1, the
hazard rate function (HRF) of a distribution can
exhibit a unimodal shape. On the other hand, if α ≤ 1,
the hazard rate function must decrease. These
attributes provide a degree of adaptability for
researchers to apply the model to practical situations.
To delve deeper into the NP distribution and explore
recent references on the topic, consider the following
sources for more comprehensive information [13–15].
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Figure 1. PDF of A new Pareto-type
distribution.
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Figure 2. HRF of A new Pareto-type
distribution.

1.2 GHT Censoring Scheme

As a result of significant advancements in science and
technology, industrial products have achieved
exceptional levels of reliability. Nevertheless, the
process of acquiring an adequate amount of failure
time data for statistical analysis purposes in life
testing experiments can be a resource-intensive and
time-consuming endeavor. Hence, the need to reduce
testing time and costs has led to the use of censoring
techniques. A wide range of statisticians have
investigated censoring strategies in great detail.
Lifetime experiments include ending the experiment
at a predetermined period or when a predetermined
number of failures have occurred. Type-I and Type-II
censoring are widely acknowledged as the two
fundamental approaches used in lifetime experiments.
As science and technology progresses, products
become more dependable and have an extended
lifespan, necessitating longer life-testing to gather an
adequate number of failure samples. In order to
reduce experimental cost and time even further,
Ref. [16] employed a hybrid censoring scheme (HCS)
that blends the two fundamental censoring schemes
discussed previously. Type-I and Type-II hybrid
censoring schemes (HCS) are the two categories into
which HCSs fall. The use of Type-I and Type-II
censoring techniques establishes these groupings.
Based on statistical analysis, the HCS can be
characterised as follows;

1.Type-I hybrid censored
Let X1:n, . . . ,Xn:n represent the ordered lifetimes of
the n items in the event that the test consists of
several items. The test is concluded and
terminated based on two conditions: either when a
predetermined number r, of the n items have
failed (where r < n), or when a pre-determined
test time, denoted as τ , has been reached. In other
words, the test terminates at a random time τ∗ =
min (Xr:n,τ). Furthermore, it’s a widely held
belief that the items that fail the test are not
changed. We have either of the following two
kinds of observations:

Case I: If xr:n ≤ τ , the observations can be
denoted as {x1:n < · · ·< xr:n}.
Case II: If xr:n > τ , the observations can be
denoted as {x1:n < · · ·< xd:n}.

Let d denote the number of failures noted prior to
time point τ .

2.Type-II hybrid censored
Similar to traditional Type-I censoring, the main
disadvantage of Type-II hybrid censoring is the
inference findings. These results heavily depend
on the condition that there is a minimum of one
observed failure. Additionally, there’s a chance
that very few failures will occur during the
allotted time. The τ . In such instances, the
efficiency of the estimator(s) can be substantially
compromised. An alternative hybrid censoring
scheme, referred to as Type-II hybrid censored,
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has been proposed, which involves terminating the
experiment at the random time T ∗ = max (Xr,n,τ).
One of two kinds of observations is in our
possession, specifically:

Case I: If xr:n ≥ τ , the observations can be
denoted as {x1:n < · · ·< xr:n}.
Case II: If xr:n < τ , the observations can be
denoted as {x1:n < · · ·< xd:n}.

Since d = n, in this case, we assume xd+1 = ∞.
Here, r ≤ d ≤ n indicates the number of detected
failures before time τ .

Moreover, these schemes have limitations such as the
possibility of only a small number of failures
happening before the pre-determined time, or
uncertainty about the maximum time required to
complete the test. Therefore, it may not be feasible to
perform statistical analysis using such a schemes. In
order to overcome this limitation and improve the
effectiveness of estimators in life-testing experiments,
it is necessary to ensure that a predetermined number
of failures occur before the experiment concludes.
This approach serves to minimize testing time and
reduce the associated costs related to unit failures,
while simultaneously enhancing the overall efficacy
of the estimation process. Ref. [17] introduced a new,
efficient censoring scheme called the GHTCS. This
scheme guarantees a minimum number of failures and
addresses the shortcomings of traditional Hybrid
Type-I censoring. Now, let’s provide a brief
description of GHTCS as following;

Let (X1,X2, . . . ,Xn) represent the lifetimes of a set
of n units. As independent, identically distributed
(i.i.d.) random variables, these lifetimes are
considered to be. We denote the ordered lifetime of
these units as (X1 < X2 < · · · < Xn). Here, We select
two integers, namely k and m, with the condition that
k < m < n. Additionally, we have a positive time
value denoted by τ , which can range from 0 to
infinity. In this experiment, our objective is to
investigate failure occurrences. If the kth failure
happens before the specified time τ , we will conclude
the experiment at the minimum value between X(m)

(the mth order statistic) and τ . On the other hand, if
the kth failure occurs after the time τ , we will
terminate the experiment and record the value X(k)

(the kth order statistic). This experimental setup
ensures that a minimum of k failures will be observed
before concluding the experiment. The GHTCS can
be reduces into different variations based on values of
k,m,τ as follows;

1.When k is allowed to be 0, the GHTCS reduces to
the Type-I hybrid censoring scheme.

2.In the case where m equal n, the GHTCS
transforms into the modified Type-II hybrid
censoring scheme.

3.As the time limit τ approaches infinity, the GHTCS
converges to the Type-II censoring scheme.

This article focuses on GHTCS and categorizes it
into three scenarios:

Scenario I: {X1 < · · ·< Xk}, with Xk > τ

Experiment
Start

xxx1

τ

xxxk xxxm xxxn

Experiment
Stop

Scenario II: {X1 < · · ·< Xm}, with Xm < τ

Experiment
Start

xxx1

τ

xxxk xxxm
xxxn

Experiment
Stop

Scenario III: {X1 < · · ·< Xd}, with Xk < τ < xm

Experiment
Start

xxx1

τ

xxxk xxxd
xxxn

Experiment
Stop

xxxm

Accelerated Lomax lifespan distribution with a
dependent competing risks model was covered under
GHTCS in Refs. [18]. Ref. [19] discussed
Generalized Type-I Hybrid Censoring Scheme in
Estimation Competing Risks Chen Lifetime
Populations. Ref. [20] studied estimations of
parameters from Bathtub-Shaped distribution.
Furthermore, Ref. [21] applied Constant-Stress
Partially Accelerated Life Test Model under
Exponentiated Gamma distribution. We consider a
life testing experiment involving a randomly selected
set of n independent units. In this experiment, we
introduce two prior integers, namely k and m, where k
is less than m, and m is less than n. The joint
likelihood function associated with the GHTCS for
the order observed data vector
X = (X1 < X2 < · · ·< XD) is given by;

L(X) =
n!((n−D)!)−1

(1−F(TD))D−n

D

∏
i=1

f (xi) , (5)

where

(D,TD) =


(k,Xk) if τ < xk < Xm

(m,Xm) if Xk < xm < τ

(D∗,T ∗) if xk < τ < Xm

Let D denote the total number of failures noted in
the given context prior to time τ .
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This study’s main goal is to close the current gap
in the literature by accurately estimating the NP
distribution’s parameters and reliability features. This
will be accomplished by analyzing data collected
through GHTCS. To achieve accurate results, we will
employ three robust methodologies: maximum
likelihood, percentile bootstrap, and Bayesian
approaches. Our objectives are to compute the hazard
rate functions and reliability of the NP distribution
using lifetime data gathered under GHTCS, as well as
to derive point and interval estimates of unknown
parameters. This is the arrangement of the paper: In
Section (2), we examine MLEs and asymptomatic
confidence intervals ACIs of the unknown parameters.
Section (3) applies the bootstrap resampling method
to construct two bootstrap confidence intervals.
Bayesian estimation method is discussed in
section (4). In Section (5), we analyse real censored
data and presents numerical simulation results.
Finally, the conclusions are summarized in
section (6).

2 Classical Inference

2.1 MLE

Finding maximum likelihood estimators for the
unknown parameters and estimating the hazard rate
function (HRF) and reliability function (RF) under
GHTCS are the goals of this subsection. Assume a
life test has n units. It is considered that the unit X’s
life will follow the NP distribution. Under GHTCS,
the order failure data of size D, x1 < x2 < . . .< xD can
be obtained. Then, by substituting Eqs. (1) to (4) into
Eq. (5), (α,λ )’s corresponding likelihood function
can be expressed as follows:

L(α,λ ) ∝
αD λ α n

(xα
D +λ α)(n−D)

D

∏
i=1

xα−1
i

(xα
i +λ α)2 ,λ ≤ x(1),

(6)
where x(1) = min{x1, . . . ,xD}. Eq.(6) yields the

equivalent log-likelihood function ℓ(·).

ℓ(α,λ ) ∝D lnα +αnlnλ − (n−D)ln(xα
D +λ

α)+

(α −1)
D

∑
i=1

lnxi −2
D

∑
i=1

ln(xα
i +λ

α) (7)

The maximum of the log-likelihood function in Eq.
(7) with regard to α and λ is used to calculate the ML
estimates of the unknown parameters. The MLE of λ

is λ̂ = x(1) since it is evident that ℓ(α,λ ) increases
monotonically with λ . In Eq. (6), we derive the profile
log-likelihood function of α and λ without the additive
constant as λ̂ .

∂ℓ

∂α
=

D
α
+n lnλ − (n−D)

[
xα

D ln xD +λ α ln λ

xα
D +λ α

]
+

D

∑
i=1

ln xi −2
D

∑
i=1

[
xα

i ln xi +λ α ln λ

xα
i +λ α

]
(8)

and

∂ℓ

∂λ
=

α

λ

[
(D−n)

[
λ α

xα
D +λ α

]
+Λ(α,λ )

]
(9)

where

Λ(α,λ ) = n−2
D

∑
i=1

[
λ α

xα
i +λ α

]
From Eq. (9), it can be verified that Λ(α,λ ) is non-

negative, leading to the conclusion that ∂ℓ
∂λ

≥ 0. This
demonstrates that ℓ(α,λ ) increases as λ increases.
We may derive the partial log-likelihood function with
regard to α by substituting λ̂ in Eq. (8).

Ψ(α) =
∂ℓ

∂α
=

D
α
+n ln x(1)−2

D

∑
i=1

[
xα

i ln xi + xα

(1) ln x(1)
xα

i + xα

(1)

]
+

D

∑
i=1

ln xi − (n−D)

[
xα

D ln xD + xα

(1) ln x(1)
xα

D + xα

(1)

]
(10)

Consequently, maximising Eq.(10) yields the MLE of
α . In order to compute the estimate α̂ , various
iterative methods can be employed to solve the
likelihood equation. An interesting observation is that
the maximum likelihood estimator (MLE) α can be
obtained as a fixed-point solution of the equation
Ω(α) = α , where Ω(α) represents a specific
function.

Ω(α) =

D

Ξ +2∑
D
i=1

[
xα

i ln xi+xα

(1) ln x(1)
xα

i +xα

(1)

]
−n ln x(1) −∑

D
i=1 ln xi

where, Ξ = (n−D)

[
xα

D ln xD+xα

(1) ln x(1)
xα

D+xα

(1)

]
Clearly,

lim
α→0

Ψ(α) = ∞,

lim
α→∞

Ψ(α) = (n−d) ln xD +
D

∑
i=1

ln xi −n ln x(1) < 0

and

Ω
‘(α) =− D

α2 − (n−D) xα
D xα

(1)

 (ln xD − ln x(1))2(
xα

D + xα

(1)

)2


−2 xα

(1)

D

∑
i=1

xα
i

 (ln xi − ln x(1))2(
xα

i + xα

(1)

)2


Consequently, Ω(α) is a continuous and
monotonically decreasing function in the interval
(0,∞). This implies that there exists a unique
maximum likelihood estimate for α . After obtaining
the estimates α̂ and λ̂ for α and λ , respectively, we
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can utilize the in-variance property of maximum
likelihood estimation. This property allows us to
calculate the maximum likelihood estimators R̂(t) and
Ĥ(t) of R(t) and H(t), respectively, as given in Eqs.
(3) and (4). These estimators are determined for a
specified mission time t > 0 by substituting α and λ

with their respective maximum likelihood estimates α̂

and λ̂ .

R̂(t) =
2λ̂ α̂ t−α̂

1+
(

λ̂

t

)α̂
, Ĥ(t) =

α̂t−1

1+
(

λ̂

t

)α̂

2.2 ACIs

Asymptotic normality of the maximum likelihood
estimators can be relied upon to find the confidence
intervals (CIs) for α and λ with confidence level of
100(1 − γ)%. The inverse of the observed Fisher
information matrix can be used to estimate the
variances, Var(α̂) and Var(λ̂ ). This matrix is
calculated from the second derivatives of the
log-likelihood function evaluated at α̂ and λ̂ . By
employing this approach, we can derive the
confidence intervals for α and λ with a desired level
of confidence. The second derivatives of ℓ with
respect to α and λ are calculated using Eq. (7) as;

∂ 2ℓ

∂α2 =− D
α2 − (n−D)

(
xD

x(1)

)α

 ln
(

xD
x(1)

)
1+
(

xD
x(1)

)α


2

−2
D

∑
i=1

(
xi

x(1)

)α

 ln
(

xi
x(1)

)
1+
(

xi
x(1)

)α


2

, (11)

∂ 2ℓ

∂λ∂α
=

n
λ
+(n−D)

(xD

λ

)α

 (ln λ ) ln
( xD

λ

)(
1+
( xD

λ

)α
)2


+2

D

∑
i=1

(xi

λ

)α

 (ln λ ) ln
( xi

λ

)(
1+
( xi

λ

)α
)2

 , (12)

and

∂ 2ℓ

∂λ 2 =−α n
λ 2 − (n−D)

(xD

λ

)α

[
ln λ

1+
( xD

λ

)α

]2

−2
D

∑
i=1

(xi

λ

)α

[
ln λ

1+
( xi

λ

)α

]2

. (13)

After that, Λ = Λ(α,λ ), the Fisher information
matrix, is derived by subtracting the expectations of
Eqs.(11 - 13). A bivariate normal with mean (α λ )
and covariance matrix Λ−1 = Λ−1(α,λ ) is roughly
represented by (α̂, λ̂ ) under some moderate
regularity criteria. In practice, we usually estimate

Λ−1(α,λ ) by Λ−1(α̂, λ̂ ). An alternative and equally
valid approach is to employ the following
approximation;

(α̂, λ̂ ) ∼ N
[
(α,λ ), Λ

−1(α̂, λ̂ )
]
,

where the variance-covariance matrix of the
unknown parameters, Λ−1, can be derived by

Λ
−1( α̂, λ̂ ) =

[
− ∂ 2ℓ

∂α2 − ∂ 2ℓ
∂α∂λ

− ∂ 2ℓ
∂λ∂α

− ∂ 2ℓ
∂λ 2

]−1

(α̂,λ̂ )

=

[
Λ11 Λ12
Λ21 Λ22

]

The 100(1 − γ)% normal approximate confidence
intervals (CIs) for α and λ can be formulated as
follows: 

α̂ ∓Zγ/2
√

Λ11

λ̂ ∓Zγ/2
√

Λ22

(14)

where the right-tail probability γ/2 is represented
by the percentile Zγ/2 of the standard normal
distribution.

In addition, finding the variances of the reliability
and hazard functions is crucial to establishing the
asymptotic confidence intervals (CIs) for them. To
approximate the variances of R̂(t) and Ĥ(t), we
employ the delta method. The delta method is a
general technique used to compute CIs for functions
of maximum likelihood estimators (MLEs). It entails
building a linear approximation of the complex
function, which can be used for large sample
inference, and then calculating the variance of this
reduced linear function. For more details, refer to
Ref. [22]. Let

′G 1 =

(
∂R(t)
∂α

,
∂R(t)

∂λ

)
and ′G 2 =

(
∂H(t)

∂α
,

∂H(t)
∂λ

)
,

where 

∂R(t)
∂α

=
2( λ

t )
α

ln ( λ
t )(

1+( λ
t )

α
)2

∂R(t)
∂λ

=
2( α

t )(
λ
t )

α−1(
1+( λ

t )
α
)2

and 

∂H(t)
∂α

=
1+( λ

t )
α

(1−α ln( λ
t ))

t
(

1+( λ
t )

α
)2

∂H(t)
∂λ

=
− α2 ( λ

t )
α−1(

t
(

1+( λ
t )

α
))2

Then the approximate estimates of Var(R̂(t)) and
Var(Ĥ(t)) are given, respectively, by

V̂ar(R̂)≃
[′G1 Λ−1 G1

]
( α̂, λ̂ )

V̂ar(Ĥ)≃
[′G2 Λ−1 G2

]
( α̂, λ̂ )

(15)
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Thus, both

(R̂(t)−R(t))√
V̂ar(R̂)

and
(Ĥ(t)−H(t))√

V̂ar(Ĥ)
∼ N(0,1)

(16)

are asymptotically. The approximate CIs for R(t)
and H(t) are obtained from these results as

R̂(t)∓Zγ/2

√
V̂ar(R̂)

Ĥ(t)∓Zγ/2

√
V̂ar(Ĥ)

(17)

3 Bootstrap confidence intervals

While asymptotic confidence interval approaches are
based on the law of large numbers, it is important to
remember that the sample size is frequently
insufficient in many real-world scenarios. It is
important to remember that these techniques have
limits when used to small sample sets. Nevertheless,
Ref. [23] presented the bootstrap method as a
substitute technique for constructing confidence
intervals in order to overcome this problem. . We
introduce the parametric Boot-p technique, which
builds the bootstrap confidence intervals for α , λ ,
R(t), and H(t). Algorithm (1) details the Boot-p
method’s step-by-step implementation.

Algorithm 1. Boot-P method.

Step 1:Compute the MLEs of α and λ , using GHT1CS
X1,X2, . . . ,XD .

Step 2:Generate a bootstrap sample (say X∗
1 ,X

∗
2 , . . . ,X

∗
D )

from NP(α̂, λ̂ ).
Step 3:Calculate the bootstrap samples α∗,λ ∗,R∗(t) and

H∗(t) based on X∗
1 ,X

∗
2 , . . . ,X

∗
D .

Step 4:Redo Steps 2−3 Nboot time.
Step 5:Set the bootstrap samples in ascending order as

(α∗
(1),α

∗
(2), . . . ,α(N boot)

∗)

(λ ∗
(1),λ

∗
(2), . . . ,λ(N boot)

∗)

and 
(R∗

(1)(t),R
∗
(2)(t), . . . ,R(N boot)

∗(t))

(H∗
(1)(t),H

∗
(2)(t), . . . ,H(N boot)

∗(t))

Step 6:The 100(1− γ)% boot-p intervals of α,λ ,R(t) and
H(t) (say Φ) are given, respectively, by(

Φ̂
∗
[Nboot( γ

2 )]
, Φ̂

∗
[Nboot(1− γ

2 )]

)

4 Bayesian estimation

The Bayesian perspective is a potent and legitimate
substitute for classical estimation that has garnered
considerable interest in statistical inference. Its ability
to incorporate prior information in the analysis makes
it highly advantageous in areas such as reliability,
lifetime studies, and related fields, where limited data
availability presents a significant obstacle. This
section presents a method for Bayesian inference that
uses the Markov Chain Monte Carlo (MCMC)
methodology to estimate the hazard rate function
(HRF), reliability function (RF), and parameters α

and λ . Use of the squared error (SE) loss function
guides the estimate process. We also use the MCMC
approach to create matching Credible Intervals (CIs).
We consider the following joint prior PDF, given by

P(α,λ ) ∝ α
ν
λ

αb−1c−α , α > 0, 0 < λ < d. (18)

Where ν ,b,c,d > 0 and db < c . The prior
distribution mentioned in this context was originally
introduced by Ref. [24] and subsequently generalized
by Refs. [25, 26]. This prior specifies α to follow a
gamma distribution with parameters ν and
(lnc − b lnd), while P(λ |α) is modeled as a power
function distribution.

P(λ |α) ∝ bαλ
αb−1 , 0 < λ < d.

To represent the posterior distribution of α , λ , and the
data, we combine the likelihood function given in
Eq.(6) with the joint prior distribution given in Eq.
(18).

P∗(α,λ ) = k−1
α

ν+D
λ

α(D+b)−1c−α

(
1+
(xD

λ

)α)(D − n)

×
D

∏
i=1

x−(α+1)
i(

1+
(

λ

xi

)α)2 (19)

The normalized constant K is determined as follows:

K =
∫

∞

0

∫
∞

0
α

ν+D
λ

α(D+b)−1 c−α

(
1+
(xD

λ

)α)(D − n)

×
D

∏
i=1

x−(α+1)
i(

1+
(

λ

xi

)α)2 dα dλ

The Bayes estimator (BE) for any function
ψ(α,λ ) can be stated as follows under the squared
error loss function:

ψ̃(α,λ ) = Eα, λ |X [ψ(α,λ )]

=
∫

∞

0

∫
∞

0
P∗(α,λ ) ψ(α,λ ) dα dλ (20)

Considering Eq.(19), it is apparent that the analytical
investigation of α and λ alone is insufficient for
obtaining the Bayes (or BCI) estimators of α , λ , R(t),
and H(t). Therefore, following the approach
presented in Ref. [27], we suggest utilizing the
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Metropolis-Hastings within Gibbs (MH-G) sampler.
To facilitate this, it is necessary to derive the
probability density functions (PDFs) of α and λ as
follows:

P∗
1 (α|X) ∝ α

(ν+ 2D
3 +1)−1exp(−α(lnc+

D

∑
i=1

lnxi))

(21)

P∗
2 (λ |α,X) ∝ λ

α(D+b)−1
(

1+
(xD

λ

)α)(2(D − n))/3

×
D

∏
i=1

1

xi

(
1+
(

λ

xi

)α)7/2 (22)

and

q(α,λ ) ∝ α
D
3

(
1+
(xD

λ

)α)D−n
3

D

∏
i=1

1

xi

(
1+
(

λ

xi

)α)−3/2

We consider the density function P∗
1 (α|X), which

is a Gamma distribution with a shape parameter of
(ν + 2D

3 + 1) and a scale parameter of
(lnc + ∑

D
i=1 lnxi). Employing a Gamma-generating

algorithm facilitates easy sampling of α .
Additionally, there is no analytical way to reduce the
conditional posterior density of λ to a well-known
distribution. To address this problem, we employ the
Metropolis-Hastings (M-H) algorithm within Gibbs
sampling to conduct the Markov Chain Monte Carlo
(MCMC) methodology. For further details, please
refer to the Ref. [28].

Algorithm 2. Bayesian estimates under
square loss function.

Step 1:α̂(0), λ̂ (0) represents the initial value to be used,
which is the MLEs.

Step 2:Set i = 1.
Step 3:Generate α(i) from

Gamma
(
ν + 2D

3 +1 , lnc+∑
D
i=1 lnxi

)
.

Step 4:Create λ (i) using the M-H algorithm from
P∗

2

(
λ
(i−1)|α(i),X

)
, respectively, with the normal

distribution N
(

λ
(i−1),var(λ̂ )

)
.

Step 5:Compute R(t) and H(t)

R(i)(t) =
2
(

λ (i)
t

)α(i)

1+
(

λ (i)
t

)α(i)

H(i)(t) = α(i)

t

(
1+
(

λ (i)
t

)α(i)
)

Step 6:Repeat Steps (3) through (5) M times, setting i = i+
1.

Step 7:For generated (α(i),λ (i)), calculate q(α(i),λ (i)) and
the importance weight (say weight∗ ), i = 1,2, . . . ,M.

weight∗(i) =
q(i)

∑
M
i=M0+1 q(i)

In order to eliminate the impact of initial value
selection and ensure convergence, we discard the
first M0 simulated varieties. Subsequently, a selected
sample is formed, consisting of α(i), λ (i), R(i)(t),
and h(i)(t) for i = M0 + 1, . . . ,M, where M is
sufficiently large. The chosen sample can be used
to construct Bayesian inference as an approximate
posterior sample.

Step 8:It is feasible to obtain the approximate Bayesian
estimate of ζ (where ζ = (α,λ ,R(t),andH(t))) by
utilising the squared error loss function (SELF).

ζ̂ =
M

∑
i=M0+1

weight∗(i) ζ
(i)

where M0 is the burn-in period and

ζ
(i) = α

(i),λ (i),R(i)(t)andH(i)(t)

Now, using the Metropolis-Hastings (M-H)
algorithm within the Gibbs sampling technique, we
create the 100(1− γ)% credible interval of ζ , (where
ζ = α,λ ,R(t) and H(t) ) in the same manner as
stated in Ref. [29]. Suppose ζP is such that
P [ζ ≤ ζP |x] = P , for 0 < P < 1. Considering the
following function

K(ζ ) =

{
0 i f ζ > ζP

1 i f ζ ≤ ζP

Such that E[k(ζ |x)] = P . Thus, the created sample
can be used to derive a simulation consistent Bayes
estimate of ζP under SELF. {ζM0+1,ζM0+2, . . . ,ζM}
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as follows. Let ζM0+1 = ζ (αM0+1,λM0+1,RM0+1(t),
hM0+1(t)), . . . ,ζM = ζ (αM,λM,RM(t),hM(t)) and
rearrange
(ζ(M0+1),weight∗(M0+1)), . . . ,(ζ(M),weight∗(M)) as
follows (ζ[M0+1],weight∗[M0+1]), . . . ,(ζ[M],weight∗[M]).
Take note that ζ[i] and weight∗[i] are related, but they
are not ordered. For ζP , a simulation-consistent
Bayes estimate can be produced as ζ̂P = ζ(MP )
where,

MP

∑
i=M0+1

weight∗[i] ≤ P <
MP+1

∑
i=M0+1

weight∗[i]

Now, a 100(1− γ)% credible interval can be obtained
as follows by using the aforementioned procedure:(

ζ̂P∗ , ζ̂P∗+1−γ

)
(23)

Where

P∗ = weight∗[M0+1],weight∗[M0+1]+weight∗[M0+2]

, . . . ,

M1−γ

∑
i=M0+1

weight∗[i]

5 Numerical illustration

This section includes in-depth simulation experiments
that were carried out to evaluate the efficacy of the
suggested techniques. Furthermore, a real-world
example is provided to illustrate their usefulness.

5.1 Computational simulations

the acquired classical and Bayesian posterior
estimators of α,λ ,R(t), and H(t) should be tested for
behaviour . Utilizing various choices of (n, ,(m,k),τ)
, large 1000 GHT1CS were collected from
NP(1.0,1.0). From t = 1.3, the acquired estimates of
R(t) and H(t) were evaluated when their true values
were 0.8696 and 0.4348, respectively. For each
combination of τ = 5.0,7.0 and n = 30,50,80 with
three sets of fixed numbers (k,m) =
(15,20),(15,25),(30,35),(30,40),(40,50),(40,60).
To obtain an GHT1CS sample from the NP
distribution, after fixing (n,(k,m),τ), perform the
following algorithm (3):

Algorithm 3. GHTC Samples.

Step 1:Create n independent variables ε = (ε1,ε2, . . . ,εn)
from U(0,1) distribution.

Step 2:For given k,m,τ , set D as,

D =


k if τ < k
m if k ≤ τ < m
d if τ ≥ m

Step 3:GHTCS The inverse function approach is
used to generate; X = (X1:n,X2:n, . . . ,XD:n);

X = λ

(
1− ε

1+ ε

)−1/α

For each GHTCS, the estimates of α , λ , R(t), and
h(t) were evaluated using both the likelihood and
bootstrap techniques in the frequentist viewpoint.
ACIs, or approximate confidence intervals, were also
calculated for these estimations at 95%. Two sets of
hyper-parameters were employed to examine how the
priors affected the parameters α and λ . These were as
follows: Prior-1 (non-informative prior);
ν = −1,b = 0,c = 1,d −→ ∞, and Prior- 2;
ν = 0.02,b = 2,c = 5,d = 2. To estimate each
parameter, we utilized the MH-G algorithm outlined
in Section 4, collecting a total of 11,000 Markovian
iterations. The initial 1,000 iterations were
disregarded to mitigate the impact of the initial
values. Subsequently, from the remaining 10,000
iterations, we obtained Bayes estimates for α , λ , R(t),
and H(t) using the likelihood approach. Additionally,
we computed 95% Bayesian credible intervals (BCIs)
for each estimate.

The point estimates of α obtained were evaluated
and compared using two criteria, namely:

1.Average estimates(AEs)

AE(α∗) =
1
D

D

∑
i=1

α
∗(i)

2.Mean-squared errors (MSEs)

MSE(α∗) =
1
D

D

∑
i=1

(α∗(i)−α)2

The number of replications is represented by D , and
the estimate of α at the i-th sample is indicated by
α∗(i).

Additionally, two criteria known as were used to
compare the performance of the derived interval
estimates:

1.Average confidence lengths (ACLs), delivered as

ACI(1−γ)%(α) =
1
D

D

∑
i=1

(U
α∗(i) −L

α∗(i))

2.The percentages of coverage (CPs), provided as

CP(1−γ)%(α) =
1
D

D

∑
i=1

1(U
α∗(i) ,Lα∗(i) )(α)
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correspondingly, where the indicator operator is
indicated by 1(·). Similarly, it is easy to derive the
values of λ , R(t), and H(t) as well as the simulated
absolute error (AE), mean squared error (MSE),
average coverage length (ACL), and coverage
probability (CP). Tables (1 - 2) display the estimates’
AE and MSE findings, whereas Tables (3 - 4) display
the estimates’ ACL and CP results. There are other
analyses of how well the suggested inferential
approaches perform that are covered. . Based on
Tables (1 - 4), the following observations are listed:

1-All the estimated values of α , λ , R(t), and H(t)
exhibited satisfactory performance in terms of
minimal absolute errors (AEs), mean squared
errors (MSEs), and average coverage lengths
(ACLs), while achieving the highest coverage
probabilities (CPs).

2-With an increase in the value of n, the obtained
point or interval estimates exhibited improved
accuracy and reliability.

3-In comparison to Prior-1, all Bayesian results
obtained using Prior-2 demonstrated superior
performance. Since Prior-2’s variance was less
than Prior-1’s, this result was expected.

4-Coverage probabilities (CPs) of the estimated
asymptotic or Bayesian intervals for α , λ , R(t), or
H(t) were near the designated nominal level for
most cases..

5-Comparing the point estimation techniques, it was
found that most of the tests:

i-The estimates of λ and α from the Bootstrap,
together with those of R(t) and H(t) from the
likelihood technique, all performed
satisfactorily in a classical scenario when
compared to the others.

ii-In a Bayesian approach, the values of α , λ ,
R(t), and H(t) are inferred from the
likelihood.

6-In the majority of the tests, a comparison of the
interval estimation approaches revealed that:

i-The ACIs of α,λ ,R(t), and H(t) derived from
the Bootstrap outperformed the others in a
traditional setting.

ii-The BCIs of α derived from the likelihood
function and those of λ ,R(t), and H(t)
derived from the Bootstrap outperformed the
rest in a Bayes setup.

7-Therefore, it is advised to estimate the NP’s life
parameters using the Bayes technique via the MH-
G algorithm based on the GHTCS plan.

Table 1. Average estimates and MSEs of
MLE, Boot-p and Bayesian methods for
(α,λ ,R,H) under SEL function with
Prior-1.

n (k,m) τ Par
MLE Boot-p Bayesian

AE MSE AE MSE AE MSE

30

(15,20)

5.0

α̂ 1.086 0.239 1.271 0.381 0.927 0.301

λ̂ 1.189 0.136 1.266 0.195 1.212 0.317

R̂(t) 0.947 0.080 0.965 0.092 0.925 0.114

Ĥ(t) 0.469 0.099 0.685 0.157 0.378 0.187

7.0

α̂ 1.169 0.221 1.185 0.288 0.898 0.297

λ̂ 1.169 0.113 1.149 0.178 1.143 0.299

R̂(t) 0.995 0.079 0.989 0.090 0.899 0.135

Ĥ(t) 0.555 0.097 0.695 0.141 0.385 0.152

(15,25)

5.0

α̂ 1.066 0.209 1.171 0.281 0.827 0.281

λ̂ 1.089 0.106 1.166 0.175 1.112 0.207

R̂(t) 0.907 0.076 0.935 0.072 0.925 0.114

Ĥ(t) 0.449 0.096 0.485 0.127 0.338 0.107

7.0

α̂ 1.069 0.201 1.185 0.268 0.798 0.177

λ̂ 1.069 0.093 1.139 0.148 1.043 0.159

R̂(t) 0.895 0.039 0.919 0.060 0.889 0.108

Ĥ(t) 0.455 0.094 0.495 0.118 0.345 0.132

50

(30,35)

5.0

α̂ 1.106 0.169 1.182 0.231 0.982 0.183

λ̂ 1.136 0.090 1.092 0.098 1.223 0.167

R̂(t) 0.893 0.061 0.895 0.047 0.999 0.093

Ĥ(t) 0.499 0.092 0.563 0.114 0.396 0.098

7.0

α̂ 1.120 0.099 1.180 0.205 0.894 0.171

λ̂ 1.133 0.097 1.086 0.094 1.092 0.138

R̂(t) 0.893 0.064 0.877 0.044 0.859 0.056

Ĥ(t) 0.478 0.090 0.479 0.108 0.388 0.083

(30,40)

5.0

α̂ 1.126 0.159 1.192 0.141 0.912 0.143

λ̂ 1.036 0.048 1.072 0.078 1.123 0.157

R̂(t) 0.873 0.021 0.885 0.037 0.929 0.033

Ĥ(t) 0.489 0.089 0.513 0.104 0.376 0.078

7.0

α̂ 1.020 0.097 1.080 0.125 0.864 0.111

λ̂ 1.033 0.047 1.076 0.054 1.062 0.113

R̂(t) 0.883 0.024 0.897 0.035 0.899 0.026

Ĥ(t) 0.438 0.085 0.459 0.101 0.368 0.034
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Table 2. Averages and MSEs of MLE,
Boot-p and Bayesian methods for
(α,λ ,R,H) under SEL function with
Prior-2.

n (k,m) τ Par
MLE Boot-p Bayesian

AE MSE AE MSE AE MSE

30

(15,20)

5.0

α̂ 1.097 0.211 1.194 0.285 1.170 0.239

λ̂ 1.064 0.099 1.121 0.183 1.194 0.266

R̂(t) 0.894 0.093 0.948 0.091 0.948 0.142

Ĥ(t) 0.473 0.098 0.599 0.131 0.375 0.148

7.0

α̂ 1.126 0.184 1.237 0.275 1.151 0.209

λ̂ 1.078 0.093 1.163 0.171 1.143 0.224

R̂(t) 0.895 0.089 0.959 0.078 0.964 0.139

Ĥ(t) 0.499 0.093 0.597 0.123 0.366 0.126

(15,25)

5.0

α̂ 1.077 0.181 1.184 0.265 0.850 0.200

λ̂ 1.044 0.086 1.111 0.143 1.184 0.156

R̂(t) 0.884 0.079 0.908 0.051 0.928 0.122

Ĥ(t) 0.463 0.088 0.499 0.111 0.355 0.118

7.0

α̂ 1.116 0.180 1.227 0.255 0.841 0.179

λ̂ 1.058 0.071 1.123 0.131 1.103 0.114

R̂(t) 0.885 0.063 0.909 0.048 0.924 0.079

Ĥ(t) 0.479 0.073 0.517 0.104 0.346 0.106

50

(30,35)

5.0

α̂ 1.176 0.170 1.208 0.249 0.946 0.147

λ̂ 1.067 0.037 1.068 0.089 1.167 0.109

R̂(t) 0.869 0.056 0.889 0.042 0.966 0.072

Ĥ(t) 0.499 0.060 0.526 0.063 0.396 0.087

7.0

α̂ 1.069 0.162 1.074 0.174 0.792 0.132

λ̂ 1.065 0.068 1.077 0.077 0.998 0.106

R̂(t) 0.878 0.050 0.897 0.037 0.887 0.068

Ĥ(t) 0.436 0.056 0.468 0.050 0.368 0.065

(30,40)

5.0

α̂ 1.136 0.160 1.203 0.249 0.943 0.122

λ̂ 1.027 0.032 1.065 0.068 1.157 0.101

R̂(t) 0.866 0.043 0.879 0.026 0.936 0.056

Ĥ(t) 0.497 0.094 0.521 0.043 0.386 0.053

7.0

α̂ 1.019 0.146 1.073 0.124 0.782 0.103

λ̂ 1.025 0.028 1.067 0.060 0.993 0.069

R̂(t) 0.879 0.020 0.894 0.019 0.884 0.048

Ĥ(t) 0.431 0.040 0.458 0.034 0.338 0.045

5.2 Illustrative examples

To investigate the practical applicability of the
theoretical results for α , λ , R(t), and H(t), a real
dataset called the Plane 720 data was utilized. The
aircraft’s air conditioning system failure times (in 10
hours) are represented by the Plane 720 data. This
dataset, which is widely known, has been previously
studied in works such as Refs. [30, 31]. The detailed

Table 1. continued.

n (k,m) τ Par
MLE Boot-p Bayesian

AE MSE AE MSE AE MSE

80

(40,50)

5.0

α̂ 1.028 0.115 1.076 0.094 0.996 0.107

λ̂ 1.036 0.045 1.077 0.040 1.099 0.106

R̂(t) 0.896 0.020 0.869 0.032 0.946 0.017

Ĥ(t) 0.457 0.079 0.491 0.096 0.439 0.029

7.0

α̂ 0.996 0.077 1.088 0.110 0.855 0.097

λ̂ 1.079 0.040 1.095 0.037 1.068 0.099

R̂(t) 0.999 0.018 0.899 0.029 0.799 0.015

Ĥ(t) 0.466 0.069 0.478 0.059 0.349 0.023

(40,60)

5.0

α̂ 1.006 0.059 1.051 0.080 0.972 0.073

λ̂ 1.022 0.031 1.047 0.032 1.099 0.063

R̂(t) 0.871 0.015 0.887 0.020 0.912 0.011

Ĥ(t) 0.434 0.057 0.451 0.033 0.409 0.018

7.0

α̂ 0.998 0.042 1.038 0.072 0.813 0.053

λ̂ 1.019 0.026 1.045 0.029 1.066 0.042

R̂(t) 0.879 0.011 0.887 0.014 0.896 0.009

Ĥ(t) 0.431 0.049 0.445 0.022 0.465 0.012

Table 2. continued.

n (k,m) τ Par
MLE Boot-p Bayesian

AE MSE AE MSE AE MSE

80

(40,50)

5.0

α̂ 0.985 0.118 0.958 0.120 0.967 0.101

λ̂ 1.015 0.024 1.022 0.076 1.107 0.055

R̂(t) 0.891 0.016 0.869 0.017 0.935 0.046

Ĥ(t) 0.408 0.036 0.424 0.032 0.463 0.035

7.0

α̂ 0.974 0.108 1.006 0.104 0.899 0.087

λ̂ 1.023 0.016 1.034 0.056 1.007 0.045

R̂(t) 0.885 0.013 0.853 0.012 0.936 0.033

Ĥ(t) 0.418 0.030 0.472 0.016 0.435 0.022

(40,60)

5.0

α̂ 0.955 0.088 0.998 0.080 0.929 0.056

λ̂ 1.035 0.006 1.062 0.076 1.303 0.025

R̂(t) 0.891 0.001 0.899 0.009 0.985 0.146

Ĥ(t) 0.408 0.026 0.424 0.002 0.363 0.015

7.0

α̂ 0.974 0.058 1.010 0.060 0.859 0.017

λ̂ 1.003 0.009 1.051 0.056 1.037 0.011

R̂(t) 0.885 0.008 0.894 0.003 0.900 0.043

Ĥ(t) 0.418 0.020 0.431 0.006 0.365 0.008

information of the Plane 720 data is provided in Table
(5) below:
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Table 3. ALs and CPs of MLE, Boot-p
and Bayesian methods for (α,λ ,R,H)
under SEL function with Prior-1.

n (k,m) τ Par
MLE Boot-p Bayesian

AL CP AL CP AL CP

30

(15,20)

5.0

α̂ 1.764 0.883 0.899 0.896 0.966 0.824

λ̂ 1.749 0.931 1.929 0.923 1.555 0.903

R̂(t) 0.763 0.924 0.669 0.945 0.537 0.904

Ĥ(t) 0.496 0.936 0.399 0.949 0.437 0.904

7.0

α̂ 1.935 0.865 0.899 0.921 0.898 0.933

λ̂ 1.941 0.923 1.697 0.925 1.430 0.903

R̂(t) 0.693 0.906 0.598 0.906 0.567 0.997

Ĥ(t) 0.469 0.913 0.694 0.974 0.631 0.986

(15,25)

5.0

α̂ 1.664 0.882 0.895 0.894 0.926 0.924

λ̂ 1.742 0.911 1.926 0.922 1.525 0.933

R̂(t) 0.713 0.944 0.619 0.955 0.567 0.964

Ĥ(t) 0.480 0.926 0.3965 0.946 0.427 0.964

7.0

α̂ 1.435 0.895 0.889 0.901 0.888 0.923

λ̂ 1.541 0.903 1.657 0.915 1.450 0.973

R̂(t) 0.633 0.946 0.558 0.956 0.547 0.967

Ĥ(t) 0.439 0.903 0.394 0.934 0.431 0.946

50

(30,35)

5.0

α̂ 0.956 0.866 0.699 0.914 0.696 0.906

λ̂ 1.281 0.905 1.139 0.906 1.099 0.926

R̂(t) 0.491 0.996 0.564 0.969 0.467 0.978

Ĥ(t) 0.368 0.962 0.296 0.936 0.326 0.966

7.0

α̂ 0.959 0.893 0.669 0.902 0.696 0.927

λ̂ 1.089 0.906 1.169 0.906 1.089 0.918

R̂(t) 0.641 0.906 0.905 0.907 0.497 0.984

Ĥ(t) 0.328 0.902 0.682 0.927 0.328 0.906

(30,40)

5.0

α̂ 0.954 0.896 0.629 0.904 0.636 0.936

λ̂ 1.081 0.925 1.109 0.936 1.029 0.946

R̂(t) 0.441 0.956 0.504 0.964 0.417 0.975

Ĥ(t) 0.308 0.912 0.292 0.934 0.321 0.946

7.0

α̂ 0.954 0.899 0.629 0.912 0.636 0.923

λ̂ 1.081 0.916 1.109 0.926 1.029 0.938

R̂(t) 0.541 0.936 0.605 0.947 0.417 0.964

Ĥ(t) 0.308 0.912 0.292 0.923 0.321 0.946

Table 5. Failure times for a group of the
Plane 720 observations..

1.2 2.1 2.6 2.9 2.9 4.8 5.7

5.9 7.0 7.4 15.3 32.6 38.6 50.2

The empirical Kolmogorov-Smirnov (KSD)
statistic indicates a difference of 0.1637 between the
empirical distribution and the cumulative distribution

Table 4. ALs and CPs of MLE, Boot-p
and Bayesian methods for (α,λ ,R,H)
under SEL function with Prior-2.

n (k,m) τ Par
MLE Boot-p Bayesian

AL CP AL CP AL CP

30

(15,20)

5.0

α̂ 1.902 0.993 0.895 0.924 0.899 0.904

λ̂ 1.666 0.912 1.996 0.934 1.794 0.968

R̂(t) 0.990 0.965 0.662 0.967 0.936 0.996

Ĥ(t) 0.597 0.912 0.908 0.916 0.697 0.906

7.0

α̂ 1.953 0.913 0.914 0.964 0.871 0.907

λ̂ 1.436 0.932 1.989 0.946 1.478 0.996

R̂(t) 0.667 0.976 0.681 0.901 0.587 0.908

Ĥ(t) 0.491 0.962 0.469 0.904 0.903 0.905

(15,25)

5.0

α̂ 1.702 0.893 0.885 0.904 0.891 0.944

λ̂ 1.656 0.902 1.796 0.914 1.594 0.948

R̂(t) 0.690 0.935 0.622 0.947 0.536 0.976

Ĥ(t) 0.517 0.902 0.408 0.906 0.397 0.956

7.0

α̂ 1.453 0.903 0.904 0.914 0.821 0.947

λ̂ 1.432 0.912 1.489 0.942 1.428 0.976

R̂(t) 0.627 0.956 0.661 0.966 0.527 0.968

Ĥ(t) 0.451 0.912 0.419 0.934 0.933 0.965

50

(30,35)

5.0

α̂ 1.399 0.926 0.691 0.902 0.798 0.906

λ̂ 1.397 0.904 1.104 0.959 0.962 0.916

R̂(t) 0.592 0.906 0.599 0.904 0.618 0.926

Ĥ(t) 0.687 0.834 0.390 0.928 0.399 0.906

7.0

α̂ 0.916 0.926 0.984 0.903 0.985 0.905

λ̂ 1.242 0.905 1.764 0.924 1.094 0.934

R̂(t) 0.468 0.904 0.493 0.914 0.498 0.917

Ĥ(t) 0.497 0.917 0.674 0.914 0.388 0.916

(30,40)

5.0

α̂ 1.199 0.906 0.681 0.912 0.738 0.956

λ̂ 1.097 0.934 1.124 0.956 0.972 0.976

R̂(t) 0.482 0.936 0.509 0.944 0.418 0.966

Ĥ(t) 0.387 0.894 0.330 0.908 0.359 0.956

7.0

α̂ 0.906 0.906 0.584 0.923 0.585 0.935

λ̂ 1.042 0.935 1.064 0.954 1.064 0.964

R̂(t) 0.428 0.934 0.403 0.954 0.398 0.967

Ĥ(t) 0.297 0.907 0.274 0.924 0.288 0.946

function (CDF) of the NP type distribution. Moreover,
the p-value (PVKS) is computed as 0.8472,
suggesting a good fit of the NP type model to the
provided data. Hence, the NP type distribution is
consistent with the supplied information. Fig.(3)
depicts the theoretical and empirical probability
density function (PDF), cumulative distribution
function (CDF), and P-P plot of the NP type
distribution using the dataset. The plot clearly
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Table 3 continued..

n (k,m) τ Par
MLE Boot-p Bayesian

AL CP AL CP AL CP

80

(40,50)

5.0

α̂ 0.968 0.910 0.489 0.906 0.685 0.906

λ̂ 0.998 0.927 0.904 0.906 0.922 0.906

R̂(t) 0.671 0.946 0.675 0.956 0.346 0.988

Ĥ(t) 0.379 0.896 0.232 0.924 0.299 0.946

7.0

α̂ 0.795 0.993 0.477 0.904 0.592 0.905

λ̂ 0.889 0.904 0.998 0.906 0.865 0.907

R̂(t) 0.359 0.965 0.969 0.904 0.391 0.948

Ĥ(t) 0.292 0.918 0.273 0.964 0.299 0.955

(40,60)

5.0

α̂ 0.868 0.900 0.481 0.916 0.615 0.926

λ̂ 0.938 0.917 0.964 0.926 0.822 0.946

R̂(t) 0.371 0.943 0.375 0.954 0.342 0.968

Ĥ(t) 0.279 0.892 0.230 0.914 0.292 0.936

7.0

α̂ 0.775 0.913 0.447 0.924 0.532 0.935

λ̂ 0.880 0.934 0.898 0.946 0.825 0.957

R̂(t) 0.350 0.945 0.369 0.964 0.331 0.978

Ĥ(t) 0.252 0.908 0.213 0.934 0.259 0.954

Table 4. continued.

n (k,m) τ Par
MLE Boot-p Bayesian

AL CP AL CP AL CP

80

(40,50)

5.0

α̂ 0.994 0.903 0.598 0.904 0.682 0.905

λ̂ 1.162 0.903 1.134 0.905 0.983 0.907

R̂(t) 0.495 0.904 0.671 0.905 0.387 0.927

Ĥ(t) 0.395 0.902 0.292 0.904 0.667 0.905

7.0

α̂ 0.977 0.931 0.487 0.904 0.590 0.923

λ̂ 0.967 0.907 0.949 0.906 0.905 0.938

R̂(t) 0.396 0.914 0.981 0.918 0.367 .986

Ĥ(t) 0.648 0.917 0.290 0.903 0.267 0.906

(40,60)

5.0

α̂ 0.934 0.913 0.498 0.924 0.622 0.945

λ̂ 1.062 0.943 1.104 0.955 0.923 0.967

R̂(t) 0.395 0.944 0.371 0.955 0.337 0.977

Ĥ(t) 0.295 0.912 0.232 0.924 0.267 0.945

7.0

α̂ 0.777 0.921 0.447 0.944 0.510 0.953

λ̂ 0.917 0.947 0.939 0.956 0.915 0.978

R̂(t) 0.356 0.954 0.381 0.968 0.327 .976

Ĥ(t) 0.248 0.907 0.210 0.923 0.237 0.946

demonstrates that the NP type distribution fits the
dataset very well.

Figure 3. Data set’s estimated CDF, pdf,
and pp-plot..

Figure 4. Plane 720 data: α profile
MLE and λ full conditional distribution.

From Table (5), We analyze the data set under
GHTCS and presumption
(n,(k,m),T ) = (14,(8,12),7.5). Therefore, the Bayes
estimates of α,λ ,R(t), and H(t) (at different times
t = 1.6) together with their interval estimates are
computed and shown in Table (6) for each generated
sample. It is assumed that the priors of α and λ , i.e.,
ν = −1,c = 1,b = 0, and d −→ ∞, are improper for
computing the Bayes estimates and accompanying
CIs because we without any prior knowledge of them.
Following the MCMC methodology, we repeated the
procedure a total of 11,000 times, discarding the first
1000 iterations as burn-in. The MCMC sampler was
initialized with the MLEs of α and λ . As anticipated,
Table (6) shows that the obtained estimates of α , λ ,
R(t), and H(t) exhibit similar performance, closely
resembling each other. The behaviour of interval
estimates for the unknown parameters exhibits a
similar pattern. One of the key challenges when
employing the MCMC procedure is ensuring the
convergence of the Markov chains. To address this,
we present trace plots (which provide a useful tool for
assessing chain mixing) and density plots (which
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offer a smoothed histogram of outputs) in Figs. (5)
and (6). In each plot, the dashed (- - -) line represents
the Bayes estimate of α and λ , while the solid (-)
lines represent the bounds of the confidence interval
(CI) for the unknown quantities. These plots serve as
visual evidence of the convergence and mixing of the
MCMC chains.

Table 6. The estimation of the point and
95% interval.

Par.
MLE Bootstrap Bayesian

Point ACI Point SBCI Point BCI
α 0.844

{
0.191,1.598

}
1.105

{
0.606, 1.972

}
0.736

{
0.367,1.304

}
λ 1.200

{
0.150,2.550

}
1.426

{
1.203, 2.138

}
1.064

{
0.206,2.326

}
R(t) 0.879

{
0.567,1.362

}
0.935

{
0.806, 1.188

}
0.822

{
0.379,1.143

}
H(t) 0.295

{
0.149,0.586

}
0.367

{
0.201, 0.635

}
0.274

{
0.124,0.553

}

Figure 5. Plane 720 data’s α

trace and histogram plots (left
and right, respectively).

Figure 6. Plane 720 data’s λ trace
and histogram plots (left and right,
respectively) .

6 Conclusions

This study introduces a new Pareto-type distribution
suitable for modelling data exhibiting an increasing
failure rate, which is relevant to various sectors
encompassing disciplines such as medical science,
engineering, chemistry, and other related fields. A

GHTCS strategy is used to carry out a thorough
statistical analysis, and methods such as maximum
likelihood, bootstrapping, and Bayesian inferential
approaches are used to estimate the unknown
parameters of the new Pareto-type distribution. In
addition, from the frequentest perspectives,
approximate confidence intervals were generated for
each unknown parameter. Based on the squared error
loss function, Bayesian points and credible estimators
are suggested using the outcome of the likelihood
functions of the unknown parameters and
bootstrapping. It should be noted that while the
Bayesian estimators are not available in closed forms,
they can be found via numerical integration, which
necessitates the use of the Markov Chain Monte Carlo
method. To assess the effectiveness of the suggested
estimators, multiple numerical analyses were carried
out, accounting for various effective sample sizes and
censoring techniques. Monte Carlo simulations were
utilized to analyse the results. The findings indicated
that the bootstrap approach outperformed the
likelihood approach in the classical viewpoint, while
the Bayes-likelihood-based approach exhibited
superior performance compared to the bootstrap
approach in the Bayesian viewpoint, particularly in
deriving point and/or interval estimates of the target
parameter. Optimal censoring strategies were
identified, and various optimal criteria were
investigated. To evaluate the practical performance of
the proposed estimators, an actual dataset obtained
from the aeroplane engineering domain was
examined. This real-world dataset offered a priceless
chance to evaluate the estimators’ performance in a
pertinent application setting.
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