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Abstract: We have studied some of the bulk and microscopic properties of symmetric nuclear matter within Bruckner-Hartree-Fock 

approach with angle average approximation and exact Pauli operator using different nucleon-nucleon potentials. The considered 

potentials in this study are A V18 and Nijm I potentials, which give different equations of state. We focused in this work on the 

influence of Pauli operator treatment on the nuclear matter properties. Our results are good compared with previous studies. However, 

the empirical saturation point was not achieved. To refine the results, additional approximations were required. Remarkably, 

introducing three-body forces into the equation of state, particularly using the A V18 potential, produced outcomes that closely 

matched empirical data. Another approach involved adding a correction term to the two-body force, which also resulted in values 

consistent with empirical observations. 
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1. Introduction 

In the last decades, nuclear physics has grappled with the 

intricate task of evaluating the collective and microscopic 

properties of nuclear matter using a realistic nucleon-nucleon 

(NN) interaction [1–3]. The equation of state (EOS) governing 

nuclear matter holds paramount importance in both nuclear 

physics and astrophysics, fueling a plethora of investigations 

employing various methodologies [4]. Among these methods, 

the Bruckner-Hartree-Fock (BHF) approach has emerged as 

pivotal for probing short-range correlations and nucleon 

momentum distributions within nuclear matter [5-7]. This 

method involves solving the two-nucleon equation within the 

nuclear medium, yielding an energy and density-dependent 

effective interaction termed the G-matrix. Our analysis 

concentrates on symmetric nuclear matter and explores three 

scenarios within the BHF framework. These scenarios 

encompass employing an angle average approximation of the 

Pauli operator with a continuous choice of the single-particle 

potential, utilizing a conventional approach, and finally, 

employing the exact Pauli operator. BHF approach calculations 

rely on the selection of the single-particle potential. The 

conventional choice sets the single-particle energy to zero above 

the Fermi  level [8], whereas the continuous choice presumes 

that the self-consistent BHF potential expands beyond the Fermi 

level. In this work we will use the A V18 [9] and Nijm I potentials 

[10]. Even though these potentials forecast nearly identical 

phase shifts, their mathematical frameworks differ significantly. 

The Nijm I potential includes terms that depend on momentum, 

which can be seen as a nonlocal component of the central force, 
but A V18 has a local one. The potential properties explicate the 
differences in results, as we will show in the next sections. The 

many-body approach we will use to derive the EOS of 

symmetric nuclear matter is relatively straightforward, 

specifically the non-relativistic BHF method. This method 

employs a conventional and continuous single-particle spectrum 

and utilizes two contemporary NN potentials. In the present 

work, we intend to calculate the single particle potential S. P. P. 

(as a microscopic property) and the EOS of symmetric nuclear 

matter (as a bulk property), using Computer codes for these 

Nijm I and A V18 Potentials. Discussing the effect of the Pauli 

operator treatment on the nuclear matter properties is a main aim 

of this work, moreover the enhancement of the results by 

introducing two other methods to acquire the saturation 

properties in nuclear matter. 

2. The theoretical framework 

The core element of the BHF approach involves the G-matrix, 

which is defined by the Bethe-Goldstone equation, stated as: 

    𝐺(𝑤) =  𝑉 +  𝑉
𝑄

𝑊 − 𝐻0 +𝑖𝜂 
𝐺(𝑤)                                     (1) 

Here, w represents the initial energy, V denotes the bare two-

nucleon potential, H0 stands for the unperturbed energy of 

intermediate states, η is a small parameter, and Q is the Pauli 

operator that excludes states with two nucleons beyond the 

Fermi level. The association is expressed as: 

𝑄(𝑘, 𝑘/) = (1 − 𝛩𝐹  (𝑘))(1 − 𝛩𝐹(𝑘/))                                  (2) 
In this context, ΘF (k) = 1 if k is less than kF and zero 

otherwise and ΘF represents the probability of occupation for a 

free Fermi gas where the Fermi momentum k is less than kF.In 

accordance with the BHF approach, the total energy of nuclear 

matter is defined by the following equation:  𝐸𝐴 = ∑
ℏ2𝑘2

2𝑚
+𝑘

1

2
∑ < 𝑘𝑘/ |𝐺(𝑒(𝑘)  +  𝑒(𝑘/))|𝑘𝑘/ >𝑘/<𝑘𝐹

                        (3(  
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Here, | 𝑘𝑘/⟩ denotes to the anti-symmetrization of the G-matrix 

elements. The single particle energy e(k) is the combination of 

the kinetic energy T and the single potential energy U(k) and it 

is expressed as: 

𝑒(𝑘) = 𝑇 + 𝑈 (𝑘) =
ℏ2𝑘2

2𝑚
+ 𝑈 (𝑘)                                            (4) 

Here, U(k) is determined by the self-consistent equation as 

specified in eq. (3): 

𝑈(𝑘) =  ∑ < 𝑘𝑘/|𝐺(𝑒(𝑘)  +  𝑒(𝑘/))|𝑘𝑘/ >𝑘/<𝑘𝐹
                     (5( 

Assuming that the single-particle energy has a quadratic 

dependence on the nucleon momentum, e(k) can be written in 

the formula: 

𝑒(𝑘) = {

ℏ2𝑘2

2𝑚∗
+ 𝛥            𝑘 ≤ 𝐾𝐹

ℏ2𝑘2

2𝑚∗
                   𝑘 > 𝐾𝐹

                                             (6) 

where m∗ represents the effective mass of the nucleon and Δ is 

a constant that provides the single-particle energy at k=0. 

3. Results and Discussion 

In this work, the S. P. P. U (k) for the symmetric nuclear matter 

using eq. (5) with A V18 and Nijm I potentials is calculated with 

self-consistent method. We plot the reliance of the S. P. P. U (k) 

on the momentum k in fig. 1 for the considered potentials. From 

fig. 1, it is observed that U(k) exhibits a straightforward 

parabolic shape and increases as k rises for two suggested 

interactions. In addition, it can be observed that the local 

potential (A V18) is more stiff compared to the non-local 

potential (Nijm I). 

Figure 1: The single particle energy U (k) calculated for symmetric 

nuclear matter as a function of momentum k. 

By computing the depth of the potential (indicating the 

magnitude of U (k) at k = 0) which equals -80.1611, -84.7308 

and -88.9538 MeV for A V18 and -82.4072, -87.6437 and -

89.9075 MeV for Nijm I, corresponding to the conventional 

choice, the continuous choice and the exact Pauli operator 

respectively. Our findings indicate that U(k) exhibits greater 

repulsion in the angle average approximation compared to the 

exact Pauli operator. This highlights that the effective 

interaction between nucleons is more attractive with the exact 

Pauli operator than with the angle average approximation [11]. 

We observe that the results are much closer to each other when 

employing the exact Pauli operator compared to the angle 

average approximation cases for the two potentials. While the 

effect of the potential disappears at high momenta in the case of 

exact Pauli’s operator, but still continuous in the angle average 

approximation cases. In addition, the curve depicting the 

conventional choice shows a softer and more repulsive behavior 

compared to the other curves for both potentials. Fig. 2 displays 

the binding energy per particle EA in MeV against the density ρ 

for the symmetric nuclear matter using Nijm I potential and 

comparing with A V18 potential from [21]. From the figure, it is 

clear that the binding energy per nucleon (EA) decreases as the 

density ρ increases until it reaches a point where it saturates 

(indicated by solid points). Subsequently, it begins to increase 

with further increments in ρ. 

 

Figure 2: Shows the binding energy per nucleon (EA) for symmetric 

nuclear matter as a function of density (ρ), with the saturation points 

marked by solid dots, and the empirical saturation point indicated by a 

large square. For both Nijm I and A V18 potentials. 

At low densities, the EA with A  V18 potential shows stronger 

repulsion compared to Nijm I. This indicates that the quenching 

effect, which reduces the influence of non-Born terms in the G-

matrix, is less effective for Nijm I than for A V18. Consequently, 

the Nijm I potential exhibits greater attraction [11]. The 

saturation points located within a range known as the Coester 

band [12] shifted with respect to the empirical saturation point 

(ρ0 = 0.17 fm−3; EA = -16 MeV). Table (1) shows the saturation 

points in all cases for the two considered potentials. The 

saturation points extracted in ref. [13] for the same potentials are 

EA = -17.3 MeV at ρ0 = 0.2587 fm−3 for A V18 and EA = - 20.7 

MeV at ρ0 = 0.3452 fm−3 for Nijm I. These differences between 
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the results are attributed to the parabolic shape of the S. P. P. 

U(k) and the selection of the cut-off momentum set at k =9 fm−1 

[11].   

Table 1   : The values of the saturation binding energy EA and 

the corresponding density ρ in all cases for the considered 

potentials. 

 

As previously stated [14–16], calculations that do not account 

for relativistic effects and rely solely on two-body interactions 

have not successfully determined the accurate the point of 

saturation in symmetric nuclear matter. This recognized 

shortcoming is typically addressed by incorporating the three-

body force (TBF). Although significant advancements have 

been made in the theoretical understanding of nucleon three-

body forces, a comprehensive theory remains undeveloped. The 

Urbana group has proposed a practical model for nuclear TBF 

[17]. Specifically, the TBF is expressed as the combination of 

two distinct components: 

  𝑽𝒊𝒋𝒌 = 𝑽𝒊𝒋𝒌
𝟐𝝅 + 𝑽𝒊𝒋𝒌

𝑹                                                                           (7) 

The initial term is an attractive component arising from twopion 

exchange involving the excitement of an intermediate Δ-

resonance. Conversely, the second term is a central repulsive 

phenomenological component. The contribution from the 

twopion exchange is represented as a cyclic summation across 

the nucleon indicator i, j, and k, involving products of 

anticommutator { , } and commutator [ , ] terms. 

𝑽𝒊𝒋𝒌
𝟐𝝅 = 𝐴 ∑𝑐𝑦𝑐 ({𝑋𝑖𝑗 ‚ 𝑋𝑗𝑘} {𝜏𝑖 . 𝜏𝑗  ‚  𝜏𝑗 . 𝜏𝑘} 

+
1

4
 [𝑋𝑖𝑗 ‚ 𝑋𝑗𝑘][𝜏𝑖 . 𝜏𝑗  ‚  𝜏𝑗 . 𝜏𝑘] )‚                                                     (8) 

Where 

𝑋𝑖𝑗 = 𝑌(𝑟𝑖𝑗)𝜎𝑖 ∙  𝜎𝑗 + 𝑇(𝑟𝑖𝑗) 𝑆𝑖𝑗                                                     (9) 

The operator Xij represents the one-pion exchange, where τ and 

σ represent the isospin and Pauli spin operators, respectively. 

The tensor operator is defined as  𝑆𝑖𝑗 = 3[ (𝜎𝑖  ∙  𝑟𝑖𝑗)(𝜎𝑗  ∙  𝑟𝑖𝑗) −

𝜎𝑖𝜎𝑗  ]. The functions T(r) and Y(r) correspond to the tensor and 

Yukawa functions linked to the one-pion exchange, similar to  

their role in the two-body potential. The repulsive component is 

defined as:  

𝑽𝒊𝒋𝒌
𝑹 = 𝑈 ∑𝑐𝑦𝑐  𝑇2(𝑟𝑖𝑗)𝑇2(𝑟𝑗𝑖)                                                    (10) 

The constants A and U in the preceding equations can be 

modified to match the observed nuclear properties. We 

implemented the same Urbana TBF model within the BHF 

framework, referreed to as BHF+TBF. The resulting equation of 

state (EOS) derived from using A V18 is presented in Table. 2 

for symmetric nuclear matter. The EOS saturate at (ρ0 = 0.17 

fm−3; EA = -15.6 MeV). It is apparent that the incorporating of 

the three-body force (TBF) alongside the chosen two-body 

interaction modifies not just the saturation point but also the 

entire equation of state (EOS) range for symmetric nuclear 

matter.  Regarding the second potential (Nijm I); The Nijm I 

potential includes momentum-dependent terms, which result in 

a non-local potential in configuration space [11]. This non-

locality impacts the short-range and medium ingredient of the 

central force, leading to stronger binding and a softer equation 

of state (EOS) compared to local potentials like the A V18. 

Consequently, the reduction of attraction by non-Born terms in 

the G-matrix is less effective for the Nijm I potential. Due to 

these characteristics, the evaluation of the Nijm I potential is 

underestimate the binding energy of three-and four body 

systems [18,19]. Another approach to achieving saturation 

properties in nuclear matter involves augmenting the self-energy 

or effective interaction in BHF calculations with a simple 

contact interaction (CT). This contact interaction is selected 

using the notation of the Skyrme interaction [20].   

CT =
3

8
 𝑡0 𝜌 +

3

48
 𝑡3 𝜌1+𝛿                                                           (11) 

In this context, ρ denotes the density, while t0, t3, and δ are pa- 

rameters of the contact interaction. The parameters t0 and t3 

indicate the zero-range and three-body strength, respectively, 

and the exponent δ governs the high-density behavior. With δ 

typically fixed at 0.5, we have adjusted t0 and t3 so that the BHF 

combined with the contact term from eq. (11) aligns with the 

empirical values of saturation for symmetric nuclear matter (ρ0 

Model ρ (fm−3) EA (MeV) 

BHF AV18 - angle average approx. 

(cont.) 

0.2270 -14.795 

BHF AV18 - angle average approx. 

(conv.) 

0.2309 -11.902 

BHF AV18 - Exact Pauli operator 0.2464 -17.398 

BHF Nijm I - angle average approx. 

(cont.) 

0.2915 -17.642 

BHF Nijm I - angle average approx. 

(conv.) 

0.3009 -14.555 

BHF Nijm I - Exact Pauli operator 0.2683 -18.539 
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= 0.17 fm−3; EA = -16.005 MeV) for the Nijm I potential. The 

same procedure has done for the BHF using the A V18 potential 

(ρ0 = 0.17 fm−3; EA = -16.0001 MeV) with different values of 

the parameters t0 and t3 as shown in Table 3. For both potentials. 

Table 2 : The enhancement of the EOS by adding the correction term 

for both NN potentials Nijm I and A V18 and adding the three-boy 

force. 

 

Table 3: The parameters t0, t3 of the contact interaction (CT), for both 
Nijm I and A V18 potentials . 

Parameters BHF Nijm I BHF  A V18 

t0 [MeV fm3] -184.2 -167.76 

t3 [MeV fm4.5] 2850 2499 

 

4. Conclusion 

Finally, it is noted that the precise treatment of the Pauli 

operatorresults in enhanced correlation effects in the medium 

compared to the angle average approximation with his two 

choices. Nevertheless, the impact of this approach is relatively 

minor near the empirical saturation point at low densities, even 

when varying the potential used, consistent with earlier research 

findings [8]. However, the accurate determination of the 

saturation point remains elusive, indicating a necessity for 

adjustments in the model to address this issue. This suggests a 

need for model adjustments to resolve the issue. Modifications 

were implemented using two approaches: first, by incorporating  

the three-body force (TBF) into the local A V18 potential. The 

integration of TBF with the existing two-body forces 

significantly altered the overall trend. Without requiring precise 

adjustments, the resulting equation of state achieved a saturation 

method involves introducing a contact interaction (CT) into our 

Brueckner-Hartree-Fock (BHF) framework to improve the two 

-body equation of state. This adjustment yields empirical values 

and enhances the accuracy of the equation of state across a wide 

range of densities.  Finally, when the saturation point is 

consistently reproduced with precision, it signifies a robust. 

determination of the complete equation of state (EOS). The 

nuclear EOS can be considered uniquely defined with a high 

degree of accuracy, particularly when employing microscopic 

many-body theory and realistic, precise two-body interactions. 
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