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Abstract: The equation of state (EOS) of ANM by using the Bruckner-Hartree-Fock (BHF) approach enhanced by integrating a 

phenomenological 3-body force (3BF), contact term (CT) and Dirac corrections are investigated in this paper. In the present BHF 

calculations we used two types of realistic nucleon-nucleon (N-N) interactions. One is the charge-dependent Bonn potential (CD-

Bonn) and the other is local soft core Argonne (V18). We can be used the EOS to obtain the bulk properties of nuclear matter such 

as the pressure, the incompressibility and the symmetry energy. The good agreement is observed when compared between the 

previous theoretical estimates and experimental data. After that we study the thermal properties of asymmetric nuclear matter such 

as the pressure at T= 0, 4, 8, 12, 16, 20, 24, 28 and 32 MeV. Also, a critical temperature Tc for asymmetric nuclear matter is found 

and there is no phase transition at high asymmetry parameter (α). 
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1. Introduction 

The microscopic computations of asymmetric nuclear 

matter are significant in nuclear physics and astrophysics. The 

stellar structure equation (TOV equation) for a neutron star is 

fundamentally based on the properties of ANM, where it is 

determines the properties, such as the radius and the density 

profile of the neutron star and the maximum mass [1-3]. In 

addition to the general interest for the EOS of asymmetric 

nuclear matter in nuclear astrophysics, theoretical studies show 

that the properties (the binding energy, the radius and the 

thickness of neutron skins, the density distribution, and the 

deformation) of neutron-rich nuclei near the drop line depend 

sensitively on the isospin-dependent part of the equation of 

state for the nuclear matter [4-7]. Consequently, A microscopic 

theory of the structure of nuclei far from the valley of beta 

stability is being investigated through the study of asymmetric 

nuclear matter, which is the first step to this "hot" topic that is 

being produced by the rapid development of radioactive beam 

facilities. 

This paper applies an approximation approach to ANM that 

is similar to the one that was developed [8]. Our work focuses 

on the effect of 3-body force on the bulk and single-particle 

properties in ANM using the BHF model. This advantage 

confirms that the thermodynamic consistency is satisfied in the 

BHF+3BF approach, e.g., the binding energy at saturation 

equals the chemical potential of the nucleons (Fermi energy) is 

usable. 

2. The theoretical model  

Z protons and N neutrons compose any ANM system, and 

they interact with one another via the strong nuclear 

interaction. The total density is given by ρ=ρp +ρn and to the 

asymmetry parameter α= (N-Z)/A through the equations: 

χn =
N

A
=

ρn

ρ
=

1+α

2
   

χp = 
z

A
= 

ρp 

ρ
= 

1−α

2
 (1) 

At first, we begin by building each of the G matrices of the 

BHF method of ANM, which describes the effective 

interaction between two nucleons when a medium is present 

[9-12]. They are gained by resolving the well-known Bethe-

Goldstone equation. 

〈𝑘 ⃗⃗⃗  𝑞 |𝐺(Ω)|𝑘 ⃗⃗⃗  𝑞 〉𝜏𝜏′

= 〈𝑘 ⃗⃗⃗  𝑞 |𝑉|𝑘 ⃗⃗⃗  𝑞 〉

+ ∫𝑑3𝑝1 𝑑3𝑝2〈𝑘 ⃗⃗⃗  𝑞 |𝑉|𝑝1 ⃗⃗⃗⃗  ⃗𝑝2⃗⃗⃗⃗ 〉𝜏𝜏′ × 

𝑄 (𝑝1𝜏,𝑝2 𝜏
′)

Ω−(𝑒𝑝1 ,𝜏+𝑒𝑝2 ,𝜏
′)+𝒾𝜂

〈𝑝1 ⃗⃗⃗⃗  ⃗𝑝2⃗⃗⃗⃗ |𝐺(Ω)|𝑘 ⃗⃗⃗  𝑞 〉𝜏𝜏′   (2) 

The 𝑒𝜏 of a nucleon with momentum 𝑘⃗   is taken as  
 

𝑒𝑘𝜏 = 
𝑘2

2𝑚
+ 𝑅𝑒[∑ (𝑘⃗ , 𝜔 = 𝑒𝑘𝜏)

𝐵𝐻𝐹
𝜏 ]  (3) 

The "on-shell energy" G-matrix is used in the Bruckner-

Hartree-Fock approach to calculate U(𝑘⃗ ), which is produced by 
 

𝑈𝜏(𝑘⃗ , 𝜔) = 𝑅𝑒 ∑ (𝑘⃗ , 𝜔)𝐵𝐻𝐹
𝜏 =

 ∑ ∫𝑑3𝑞〈𝑘 ⃗⃗⃗  𝑞 |𝐺(Ω)|𝑘 ⃗⃗⃗  𝑞 〉𝜏𝜏′𝑛𝜏′
0 (𝑞 )𝜏′  (4) 

 

This indicates that for ANM with a total density ρ and 
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asymmetry α. 
 

𝜌 =  𝜌𝑝 + 𝜌𝑛 . 

𝛼 = 
𝜌𝑛− 𝜌𝑝

𝜌
 (5) 

this occupation probability is defined by 

𝑛𝜏′
0 (𝑞 ) =  {

1    𝑓𝑜𝑟  |𝑞 | ≤ 𝑘𝐹𝜏

0    𝑓𝑜𝑟   |𝑞 | > 𝑘𝐹𝜏 
 (6) 

the total binding energy per nucleon can be expressed as 

𝐸

𝐴𝑇𝑜𝑡𝑎𝑙
= 

𝐸

𝐴𝐵𝐻𝐹
+

𝐸

𝐴3𝐵𝐹
 (7) 

where in BHF approach, the binding energy can be calculated 

as: 

𝐸

𝐴𝐵𝐻𝐹
= ∑

3

𝑘𝐹
3 ∫

𝑘2

2

𝑘𝐹

0
[
(𝑘)2

2𝑚
+ 𝑒(𝑘)] 𝑑𝑘 (8) 

In this work, the two-body force (2BF) of the realistic N-N 

interaction is used in the BHF calculation. It is completed by a 

3BF of the Urbana type [13], which was reduced to a 2B 

density dependent force for use in BHF calculations by 

averaging over the third nucleon in the medium [14]. The two 

parameters (A and U) of the 3BF correction are determined by 

requiring that the BHF approach reproduces the energy and 

saturation density of SNM. The 3BF is expressed explicitly as 

the sum of two terms: 

𝑉𝑖𝑗𝑘 =  𝑉𝑖𝑗𝑘
2𝜋 + 𝑉𝑖𝑗𝑘

𝑅  (9) 

The two - pion exchange contribution is a cyclic sum over the 

nucleon indices i, j, k of products of commutator [,] and 

anticommutator {,} terms 

𝑉𝑖𝑗𝑘
2𝜋 =   𝐴 ∑  ({𝑋𝑖𝑗 , 𝑋𝑗𝑘}{𝜏𝑖  . 𝜏𝑗  , 𝜏𝑗  . 𝜏𝑘  } +𝑐𝑦𝑐

1

4
 [𝑋𝑖𝑗 , 𝑋𝑗𝑘][𝜏𝑖  . 𝜏𝑗  , 𝜏𝑗  . 𝜏𝑘]) (10) 

Where 

𝑋𝑖𝑗 = 𝑌(𝑟𝑖𝑗)𝜎𝑖 . 𝜎𝑗 +  𝑇 (𝑟𝑖𝑗)𝑆𝑖𝑗  (11) 

The repulsive part is defined by 
 

𝑉𝑖𝑗𝑘
𝑅 = 𝑈 ∑ 𝑇2(𝑟𝑖𝑗)𝑇

2(𝑟𝑗𝑘)𝑐𝑦𝑐  (12) 

In the previous equations, the A and U parameters can be 

changed to reproduce the nuclear properties that are observed 

[15]. Two levels are involved when adding 3-body forces in 

BHF computations. The initial level, in a standard G-matrix 

calculation, the bare N-N interaction is enhanced with a 

density-dependent effective two-body interaction. Furthermore, 

the total energy must be modified to avoid match counting the 

3BF contribution. [16, 17]. To do this, only at the lowest order 

can the Hartree-Fock (HF) contribution from 3BF be 

subtracted [18]: 

𝐸

𝐴3𝐵𝐹
= 

𝐸2𝐵𝐹

𝐴
− 

1

12

3

𝑘𝐹
3 ∫ 𝑘2𝑑𝑘 ∑ (𝑘)3𝐵𝐹

𝐻𝐹
𝑘𝐹

0
                              (13) 

Another correction, in nuclear matter in order to attain 

saturation properties, there is another method. BHF 

calculations must be supplemented by a simple contact 

interaction based on the Skyrme interaction at the mean field 

level for SNM [19]. 

∆𝐻 =  ∆𝐻0 + ∆𝐻3 (14) 

where  

∆𝐻0 = 
𝑡0

8
[3 − 𝛼2]𝜌 (15) 

and  

∆𝐻3 = 
𝑡3

48
[3 − 𝛼2]𝜌1+𝛾 (16) 

where 𝑡0, 𝑡3 and 𝛾 are free parameters and they represent 

the zero range and 3 -body strength, respectively. The 

parameter 𝛼 is the asymmetry parameter (equal zero in SNM). 

We have fitted 𝑡0 and 𝑡3 by looking at certain properties or 

quantities and comparing their theoretical values with those 

known from experimental evidence. 

The last correction, suggested corrections due to relativistic 

and other many-body effects [20]. The lowest order relativistic 

correction to the binding energy per nucleon in nuclear matter 

can be calculated by modifying the self-energy of the scalar 

meson. It can be approximated as 

(
𝐸

𝐴
)𝑟𝑒𝑙 ≅ 2.4 (

𝜌

𝜌0
)
8

3⁄     MeV for ANM (17) 

where 𝜌0 is taken 0.17 fm-3. We can obtain the Dirac–

Brueckner by adding this correction to the nonrelativistic 

Brueckner G-matrix calculation. 

By Stocker and Küpper et al. [21] Statistical mechanics of 

interacting Fermi systems techniques have been used to 

generalize the expressions for the thermal parameters of SNM 

to finite temperatures [22], at low temperatures. The entropy 

density for ANM can be expressed explicitly as 

𝑆 = 2𝑇 ∑ 𝑎𝑖𝑖 𝜌𝑖 (18)  

Where, 

𝑎𝑖 =  
𝜋2

2
  

𝑚𝑖
∗

𝑘𝐹𝑖
2 = 

𝜋2

2
 

𝑚𝑖
∗

(3 𝜋2𝜌𝑖)
2 3⁄ ] (19) 

the free energy per nucleon is find by: 

𝐹 =  
𝐸

𝐴𝑇=0
− 𝑎𝑖(𝜌)𝑇2 =

𝐸

𝐴𝑇=0
−

𝑇2𝜋2

2
∑ [

 𝑚𝑖
∗(𝜌𝑖)

((3 𝜋2𝜌𝑖)
2 3⁄ )

]𝑖  (20) 

also, we can calculate the pressure per nucleon in ANM by:  

𝑃 =  𝜌2(
𝜕𝐹

𝜕𝜌
) (21) 

3. Results and discussion 

3.1. The EOS of ANM 

The binding energy per particle (E/A) of ANM is plotted as 

a function of the density (ρ) at different values of asymmetry 

parameter α (0.2, 0.4, 0.6 and 0.8) using CD-Bonn potential 

within the six approaches BHF, BHF+3BF, BHF+CTγ=0.33, 

BHF+CTγ=0.5, BHF+CTγ=0.66 and BHF+Dirac is shown in Fig. 

(1). We can see that, the BHF approach is more attractive than 

the other approaches and the BHF+Dirac approach is more 
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repulsion than the other approaches. The EOS becomes more 

repulsive when the asymmetry parameter (α) increases. Also, 

we can note that, the saturation densities of ANM depend on α 

and  

At the asymmetry parameter α=0.8 the EOS becomes an 

incremental function with the density. It is also seen that, the 

3BF has almost no effect on the EOS of ANM in the relatively 

low-density region. While at relatively high density, the 3BF 

provides a repulsive contribution to the EOS of ANM, and as 

increasing density, this repulsion from the 3BF becomes 

stronger and stronger. 

 

Figure 1: the E/A in MeV for ANM as a function of density ρ in fm-3 

using CD-Bonn potential within BHF (solid line), BHF+3BF (dotted 

line), BHF+CTγ=0.33 (short dashes), BHF+CTγ=0.5 (dot-dashed line), 

BHF+CTγ=0.66 (double dot-dashed line) and BHF+Dirac (double 

dashed-dot line) approaches. 

 

Figure 2: the E/A in MeV for ANM as a function of density ρ in fm-3 

using AV18 potential within BHF (solid line), BHF+3BF (dotted line), 

BHF+CTγ=0.33 (short dashes), BHF+CTγ=0.5 (dot-dashed line), 

BHF+CTγ=0.66 (double dot-dashed line) and BHF+Dirac (double 

dashed-dot line) approaches. 

Figure 2 is like to Figure 1 but using AV18 potential. One 

can see that, when α raises, the equation of state becomes more 

repulsive. Also, we can see that, the saturation densities of 

ANM change when the α changes and the saturation points 

shift to lower densities. Also, the inclusion of 3BF to BHF 

approach raises the repulsion of EOS. At the low densities, the 

difference between the six approaches is small but at the high 

densities this difference is increases with increasing the 

density.  

In Tables 1 and 2 the equilibrium properties (i.e., calculated 

saturation properties) of ANM are summarized for the six 

approaches using CD-Bonn and AV18 potentials, respectively. 

One can see that, at the equilibrium density the compression 

modulus becomes smaller with the 3-body force despite its 

strong repulsive effect which enhances the curvature of the 

EOS. It goes back to the fact that it is also proportional to the 

square of the equilibrium density, which turns out to be very 

much reduced. Also, we can see that when the CT and Dirac 

corrections are added to the BHF calculations, the EOS 

becomes more repulsion than the other approaches. 

3.2. The thermal properties of ANM 

We can see from Figs. 3 and 4 the relationship between the 

pressure as a function of the total density for various values of 

temperature (T= 0.0, 4.0, 8.0, 12.0, 16.0, 20.0, 24.0 and 28.0 

MeV) at asymmetry parameter α = 0.2 within BHF, BHF+3BF, 

BHF+CTγ=0.5 and BHF+Dirac approaches by using the CD-

Bonn and AV18 potentials, respectively. we observed that, at 

low temperature, the pressure has a minimum. When T 

Table 1: The saturation points as a function of density ρ are 

calculated using the CD-Bonn potential within BHF, BHF+3BF, 

BHF+CTγ=0.33, BHF+CTγ=0.5, BHF+CTγ=0.66 and BHF+Dirac 

approaches at the different values of the asymmetry parameter α. 
 

 

 

 CD-

Bonn 

  

BHF+3BF   BHF  

E/A 

MeV 

ρ 

fm-3 

E/A0 

MeV 

0ρ 

fm-3 

α 

-14.008 0.173 -21.8 0.36 0.2 

-10.06 0.155 -16.2 0.305 0.4 

-4.406 0.117 -8.03 0.248 0.6 

BHF+CTγ=0.5   BHF+CTγ=0.3  

-14.756 0.155 -14.6 0.173 0.2 

-11.37 0.155 -11.2 0.155 0.4 

-6.054 0.117 -5.80 0.117 0.6 

BHF+Dirac   BHF+CTγ=0.6  

-15.21 0.192 -14.8 0.155 0.2 

-11.47 0.173 -11.4 0.155 0.4 

-5.602 0.136 -6.09 0.117 0.6 
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increases, the minimum disappear, and the pressure increases 

with increasing the density ρ. At lower densities, we can see 

that the values of pressure are very sensitive to temperature and 

are independent of T at higher densities. The effect of the 

temperature decreases with increasing the asymmetry 

parameter. Also, when the asymmetry parameter increases, the 

repulsion of the pressure also increases. When 3BF added to 

the BHF calculations, the pressure becomes more repulsion 

than the pressure within BHF approach and the pressure by 

BHF+Dirac approach is more repulsion than the other 

approaches. Also, when we compare between two Figures, we 

can clearly see that the AV18 potential is more repulsion than 

the CD-Bonn potential.  

From figures 3 and 4, we can see that the reasonable 

modify in the critical temperature Tc values which the critical 

temperature appears when the minimum of the curve will 

disappear. In this Table we can see the values of the critical 

temperature for all approaches. At the Tc, the pressure does not 

show any local minimum. This small change makes an 

important difference in the thermodynamical properties of 

nuclear matter. The values of the Tc follow by calculating the 

location of the minimum, searching for the condition that the 

minimum is zero, i.e. the critical temperature is calculated by 

[23], 

𝑇𝑐 =
5
5
6

2
13
6  3

1
3 𝑏

(
𝐾0

𝑚∗
0
)1 2⁄ 𝜌0

−1
3⁄  (22) 

where 𝑏 = (
2
5
2 𝜋

3 ℏ3)
1

3⁄ . In the previous formula, there is no 

explicit dependence on the saturation energy.  

and 

𝜕𝑃

𝜕𝜌
|
𝑇𝑐

= 
𝜕2𝑃

𝜕2𝜌
|
𝑇𝑐

= 0 (23) 

Table 2: The same as Table 1 but using the AV18 potential. 

  AV18   

BHF+3BF   BHF  

E/A 

MeV 

ρ 

fm-3 

E/A 

MeV 

ρ 

fm-3 

α 

-13.88 0.173 -15.6 0.23 0.2 

-10.058 0.155 -11.5 0.211 0.4 

-4.47 0.117 -5.54 0.155 0.6 

BHF+CTγ=0.5   BHF+CTγ=0.3  

-14.87 0.155 -14.7 0.173 0.2 

-11.52 0.155 -11.3 0.155 0.4 

-6.35 0.117 -5.99 0.117 0.6 

BHF+Dirac   BHF+CTγ=0.6  

-12.56 0.155 -14.8 0.155 0.2 

-9.31 0.136 -11.5 0.155 0.4 

-4.33 0.117 -6.30 0.117 0.6 
 

 The value for the critical temperature depends strongly on 

the choice of the forces and approaches. The system only exists 

in the gas phase and the pressure becomes a monotonically 

increasing function of density, above the critical temperature. 

This behavior is observed in Figs. 3 and 4 for ANM by using 

the CD-Bonn and AV18 potentials. On the other hand, from 

these figures, we notice that the 3BF causes decrease of the Tc 

of ANM for the liquid-gas phase transition, after adding the 

3BF the critical temperature is reduced to about 16.0 MeV. The 

values of the critical temperatures are listed in Table 3, and we 

can see from this table that when adding the contact term and 

Dirac corrections to the BHF calculations, the critical 

temperature doesn’t affect. We can assume that this is because 

the contact term and Dirac corrections are not dependent on the 

effective mass. 

 
Figure 3: The pressure in MeV.fm-3 for ANM as a function of the 

density ρ in fm-3 using CD-Bonn potential within BHF, BHF+3BF, 

BHF+CTγ=0.5 and BHF+Dirac approaches at asymmetry parameter 

α=0.2 and at temperatures T=0 (solid line), 4(dotted line), 8 (short 

dashes), 12(dot-dashed line), 16(double dot-dashed line), 20(double 

dashed-dot line), 24(circle-dot line) and 28MeV(square-dot line). 

 

Figure 4: The same as Fig. 3 but using AV18 potential. 

https://sjsci.journals.ekb.eg/
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Table 3: the critical temperature values by using CD-Bonn and AV18 

potentials within BHF, BHF+3BF, BHF+CTγ=0.5 and BHF+Dirac 

approaches at asymmetry parameter α=0.2. 

Model Α Tc (MeV) 

CD-Bonn 

Tc (MeV) 

AV18 

BHF 0.2 24 20 

BHF+3BF 0.2 16 16 

BHF+CTγ=0.5 0.2 20 20 

BHF+Dirac 0.2 20 20 

4. Conclusion 

The bulk properties such as the EOS of ANM are studied in 

this paper at different values of the asymmetry parameter α= 

0.2, 0.4, 0.6 and 0.8 using two N-N interaction within BHF, 

BHF + 3BF, BHF + CTγ=0.33, 0.5 and 0.66 and BHF+Dirac 

approaches. It is observed that the BHF approach is more 

attractive than the other approaches and the BHF+Dirac is 

more repulsion than the other approaches. Also, we can notice 

that the AV18 potential is more repulsive than the CD-Bonn 

potential. The saturation densities of ANM depend on the 

asymmetric parameter and at α=0.8 the EOS becomes an 

incremental function with density.  

By using T2-approximation, the predicted nuclear 

thermodynamics is entirely determined with no additional free 

parameters. The pressure is found to be strongly dependent on 

3-body correlation and the liquid–gas coexistence region gets 

reduced in size when they are included. After calculated the 

EOS we used it to study the thermal properties of ANM at the 

different temperatures T= 4.0, 8.0, 12.0, 16.0, 20.0, 24.0 and 

28.0 MeV within BHF, BHF + 3BF, BHF + CTγ=0.33, 0.5 and 0.66 

and BHF+Dirac approaches at asymmetry parameter α=0.2. 

The pressure started decreasing with increasing the density and 

it becomes be zero at the saturation density and after the 

saturation density the pressure is increases with increasing the 

density. We can say that the effect of the contact term and 

Dirac corrections is less than the effect of the 3BF propagation 

on the critical properties of the liquid–gas phase transition 
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