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Abstract: An essential component of the equation of state (EOS) of isospin asymmetric nuclear matter is nuclear symmetry energy. 

It influences the structure of neutron stars and finite nuclei. We perform qualitative investigations within chiral forces and do 

Brueckner-Hartree-Fock calculations for nuclear and neutron matter EOS in order to further our understanding of the influence of 

the symmetry energy on nuclear properties. We introduce N3LO, a nucleon-nucleon potential of chiral effective field theory, with 

various cutoff parameter values. The single particle potential's standard and continuous choices are both applied. To ensure the 

empirical saturation property, a phenomenological term based on chiral forces is introduced, modeling the three-body interaction. 

Both low and high values of the baryon density are specified in a generalized form for the equations of state. The Tolman-

Oppenheimer-Volkov equations for comparable neutron stars are solved using these equations as input. The global parameters 

(masses, radii, and composition) of a neutron star are systematically studied using the obtained nuclear equations of state. 

Keywords: BHF theory, EOS, Pauli operator, symmetry energy, chiral forces and neutron star properties. 

 

1. Introduction 

In nuclear physics and astrophysics, the equation of state 

(EOS) of nuclear matter is crucial [1,3]. Numerous techniques 

have been used to study the EOS [4]. Various methods have 

been employed to investigate both the momentum distribution 

of nucleons and short-range correlations in nuclear matter, 

including the Bruckner-Hartree-Fock (BHF) approach. The 

BHF approach, which has been developed and applied in 

several investigations, is one of the generally recognized 

methods for infinite nuclear matter. It is based on the solution 

of the two-nucleon equation in the nuclear medium, which 

produces the so-called G-matrix, an energy and density 

dependent effective interaction [5]. The single particle 

potential used in BHF approach calculations is crucial. While 

the continuous choice assumes the self-consistent BHF 

potential extends above Fermi level, the standard choice takes 

into account zero single particle energy [6]. The possibility 

employed in this work is N3LO, or next-to-next-to-next-to-

leading order [7]. A very straightforward many-body 

method—the non-relativistic BHF method with a standard 

and continuous single particle spectrum utilizing N3LO 

potential—is used to get the EOS.Although the chiral N3LO 

potential is non-local, it cannot be adequately expressed as a 

function of distance alone; instead, we must utilize the relative 

momentum between the nucleons. This potential is a high 

precision phenomenological potential; chiral perturbation 

theory's fourth order contains a NN potential. Below 290 MeV 

lab energy, the accuracy of the NN data reproduction is similar 

to that of phenomenological high-precision potentials. For a 

NN potential to be dependable up to 290 MeV, the fourth 

order is required and sufficient because NN potentials of order 

three and lower are known to be quantitatively weak. One, 

two, and three-pion exchanges as well as a collection of 

contact interactions with zero, two, and four derivatives make 

up the chiral N3LO potential. When describing experimental 

data, the chiral N3LO potential turns out to be just as precise 

as the Argonne V18 potential [8]. Since the early days of 

nuclear physics, it has been known that the EOS of nuclear 

matter contains a symmetry energy term. However, due to the 

development of radioactive ion beam facilities, which have 

made it possible to study the structure and reactions of 

neutron-rich nuclei [9], where the symmetry energy plays a 

significant role, the experimental and theoretical study of the 

symmetry energy and its density dependence is becoming an 

interesting topic. In nuclear physics and astro-nuclear physics, 

figuring out the precise form of the density dependence of 

nuclear symmetry energy is a highly significant and 

fascinating topic. Numerous significant nuclear properties, 

including the ground-state nuclei's structure, the drip line 

nuclei's structure, the neutron skin of nuclear systems, the 

dynamics of heavy-ion reactions, the physics of giant 

collective excitations, and the physics of neutron stars, are all 

determined by it [10-14]. The experimental and theoretical 

determination of the symmetry energy is highly significant 

and valuable, since it has a profound effect on the parameters 

of neutron stars, particularly in relation to its density 

dependence [15, 16]. Since symmetry energy is not a quantity 

that can be measured directly, it must be indirectly retrieved 

experimentally from observables that are related to the 

symmetry energy. Thus, the accuracy of the model used to 

describe the experimental observables will determine how the 

symmetry energy is determined experimentally. The binding 

energy loss for the system transitioning from symmetric 

nuclear matter (SNM) to pure neutron matter (PNM) is 
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explained by the symmetry energy. Neutron star properties are 

closely related to the EOS of nuclear matter at densities orders 

of magnitude greater than that of normal atomic nuclei. 

Essential parameters of neutron stars, including their mass 

range, the mass-to-radius ratio, the crust's thickness, and the 

speed at which they cool over time, can be deduced from the 

EOS [17,18].The EOS is evaluated from multiple approaches, 

utilizing information from various research projects, as high-

energy nuclear collisions, studies of the monopole resonance 

in finite nuclei and supernova and neutron star observations 

[19]. Supernova simulations indicate that an EOS that is too 

pliable to sustain certain observed neutron star masses is 

required [20]. On the other hand, studies of high-energy 

nuclear collisions suggest a stiffer EOS and appear 

abnormally big neutron star masses [21,22]. As such, it is 

difficult to draw firm conclusions on the EOS at high 

densities. Nonetheless, a suggestive agreement points to a 

rather rigid EOS, which is essential to maintain maximum 

neutron star masses in a measurable range of 1.4Mʘ to 1.9 

Mʘ, where Mʘ is the solar mass [22].After the significant 

theoretical calculations of neutron star properties carried out 

independently by Tolman [23] and Oppenheimer and Volkoff 

[24], a number of later publications in the scientific literature 

offered various theoretical predictions examining the 

complexities of the EOS. We have been investigating features 

of neutron stars, like the mass-radius relationship. Important 

requirements have been set by Baldo et al. [25] for a realistic 

EOS to be used in the investigation of neutron star properties. 

These requirements include maintaining nuclear 

incompressibility for SNM at saturation compatible with 

empirical values [26,28], faithfully representing the saturation 

point for SNM, guaranteeing a symmetry energy consistent 

with nuclear phenomenology and stability at high densities, 

and guaranteeing that the speed of sound stays slower than the 

speed of light across all relevant densities within neutron 

stars.The EOS of SNM and PNM have been taken into 

consideration in the current work's computations. Then 

computing the symmetry energy and incompressibility. The 

major goal of this work is to discuss how the properties of 

nuclear matter are affected when the momentum-space cut-off 

value is changed. We will examine neutron star properties 

including the mass-radius relationship and other proparities 

using data from this EOS. 

2. The theoretical model 

2.1 BHF and Three body force correction 

    The G-matrix is the basis of the BHF approach, which is 

defined by the Bethe- Goldstone equation as: 

𝐺(𝑤) =  𝑉 +  𝑉
𝑄

𝜔− 𝐻𝑜 +𝑖𝜂 
𝐺(𝑤)                                                     (1) 

Where ω is the starting energy, η is a small number, Ho is the 

unperturbed energy of the intermediate states, V is the bare 

2N potential and Q is the Pauli operator which projects out 

states with two nucleons above the Fermi level and its relation 

donates it: 

𝑄(𝑘, 𝑘′) = (1 − Θ𝐹  (𝑘))(1 −  Θ𝐹(𝑘′))                                 (2) 

Where ΘF is the occupation probability of a free Fermi gas 

with a Fermi momentum k < kF and ΘF (k) = 1 for k < kF and 

zero otherwise. According to BHF approach, we can calculate 

the total energy of nuclear matter by: 

𝐸/𝐴 = ∑
ℏ2𝑘2

2𝑚
+

1

2
𝑘

∑ < 𝑘𝑘′|𝐺(𝑒(𝑘) +  𝑒(𝑘′))|𝑘𝑘′ >

𝑘′<𝑘𝐹

(3) 

where |𝑘𝑘′ > refers to the anti-symmetrization of the G-

matrix elements. The single particle energy e(k) is the sum of 

the single particle potential U(k) and the kinetic energy T and 

given by:  

𝑒(𝑘) = 𝑇 + 𝑈 (𝑘) =
ℏ2𝑘2

2𝑚
+ 𝑈 (𝑘)                        (4) 

where the U(k) is given by the self-consistent equation as: 

 

𝑈(𝑘)  =  ∑ < 𝑘𝑘′ |𝐺(𝑒(𝑘)  +  𝑒(𝑘′))|𝑘𝑘′ >𝑘′<𝑘𝐹
                 (5) 

By assuming a quadratic dependence of the single particle 

energy on the nucleon momentum, e(k) can be written in the 

formula: 

𝑒(𝑘) = {

ℏ2𝑘2

2𝑚
+ 𝛥            𝑘 ≤ 𝑘𝐹

ℏ2𝑘2

2𝑚∗                    𝑘 > 𝑘𝐹

                                           (6) 

where m∗ is the nucleon effective mass and ∆ is a constant 

gives the single particle energy at k = 0. In the present work, 

we will perform our calculations for SNM and PNM in six 

situations using the BHF approach framework. In three cases, 

the single-particle potential is continuously chosen at different 

values (Λ = 450, 500, and 550 MeV) using the angle average 

approximation of the Pauli operator; in the other three cases, 

the conventional method is applied at the same Ʌ values. 

The nuclear incompressibility K around the saturation point 

by:  

𝐾 = 9𝜌2 𝜕2(𝐸/𝐴)(𝜌)

𝜕𝜌2 |𝜌=𝜌0
                                                   (7) 

where the empirical value is 220 ± 40MeV [28]. 

The EOS of SNM and PNM gives us information on the iso-

spin effects [29], specifically on the symmetry energy Esym. 

We can define the symmetry energy as:  

𝐸𝑠𝑦𝑚(𝜌) =
1

2

𝜕2(
𝐸

𝐴
)(𝜌,𝛼)

𝜕𝛼2 |𝜌=𝜌0
                                                  (8) 

The asymmetry parameter is expressed by:  

𝛼 =
𝜌𝑛−𝜌𝑝

𝜌
                                                                                      (9) 

 where ρp and ρn are proton and neutron densities in 

asymmetric nuclear matte, respectively and total density ρ 

equals 𝜌𝑛 + 𝜌𝑝. According to Hassaneen and Gad’s study [14, 

30], the binding energy per nucleon E/A fulfills the simple α2 

law as in the whole asymmetry range: 

𝛼2𝐸𝑠𝑦𝑚 =
𝐸

𝐴
(𝜌, 𝛼) −

𝐸

𝐴
(𝜌, 𝛼 = 0)                                      (10) 

Therefore, if we take α = 1, we can calculate the symmetry 

energy Esym as the difference between the binding energy of 

PNM 
𝐸

𝐴
(𝜌, 𝛼 = 1) and that of SNM 

𝐸

𝐴
(𝜌, 𝛼 = 0) as follows:  

𝐸𝑠𝑦𝑚 =
𝐸

𝐴
(𝜌, 𝛼 = 1) −

𝐸

𝐴
(𝜌, 𝛼 = 0)                                   (11) 

The density dependance of the symmetry energy has a great 

effect of neutron stars properties, so determining its value is 

very important. 

 It is commonly known that the BHF technique is unable to 

accurately forecast the saturation properties of nuclear matter. 
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Specically, it has not been able to replicate both the saturation 

[31,33] Fermi momentum (kFsat =1.36 ± 0.05 fm-1) and the 

binding energy per nucleon (E/A = -16 ± 1 MeV) at the same 

time. 

Carbone et al. [34] have studied SNM with chiral two- and 

three-nucleon forces in both the BHF and self-consistent 

Greens functions. They proposed corrections due to effects of 

chiral three-nucleon forces for the EOS of nuclear matter. 

These effects can be studied by the contact term and its 

contribution to the total energy, which is proportional to CE. 

In the Hartree-Fock approximation this is 

(
𝐸𝐶𝐸

𝐴
)𝐶ℎ𝑖𝑟𝑎𝑙 = −5.5𝐶𝐸(

𝜌

𝜌0
)2                                              (12) 

Anticipated outcomes suggest that negative values of the 

contact term strength CE [35] contribute to a more repulsive 

nature in the EOS for nuclear matter. The proximity of the 

saturation point to the empirical value aligns with CE falling 

within the interval -0.20 to -0.85, wherein CE represents the 

intensity of the contact term in the three-nucleon interaction 

[36,38].  

Rather than using chiral three-body forces, this relation is 

employed to simulate three-body forces in the current study. 

Thus, the final EOS has the form to provide observed nuclear 

matter relations. 

𝐸

𝐴
=  (

𝐸

𝐴
)

𝐵𝐻𝐹

+ (
𝐸𝐶𝐸

𝐴
)

𝐶ℎ𝑖𝑟𝑎𝑙
                                                 (13) 

2.2 Neutron star equations: 

Neutron stars and their properties are very interesting physical 

systems, such as radii and masses as function of the central 

density, can be calculated from the EOS of the β-stable matter 

or PNM contained in them at zero temperature. The EOS is 

microscopically obtained. After that, we briefly outline the 

derivation of neutron-star properties from its EOS. Firstly, we 

will consider the constituents of the neutron star which are 

protons, neutrons, and electrons. The total energy of the 

system Etot can be calculated from the equation: 

 𝐸𝑡𝑜𝑡 =
𝐸

𝐴
(𝜌, 𝑥𝑝) + 𝑥𝑝𝑚𝑝 + 𝑥𝑛𝑚𝑛 +

𝐸𝑒

𝐴
                                 (14) 

with respect to xp. In eq. (13), mp and mn are the rest masses 

of proton and neutron, 
𝐸𝑒

𝐴
  is the contribution from electrons to 

the total energy Etot and 
𝐸

𝐴
(𝜌, 𝑥𝑝) is the binding energy per 

nucleon of β-stable matter. 
𝐸𝑒

𝐴
 can be approximated by its 

relativistic free-gas expression, so the electron energy per 

nucleon becomes [39,40]: 

  
𝐸𝑒

𝐴
= ℏ𝑐

(3𝜋2𝑥𝑝)
4

3⁄

4𝜋2
 𝜌

1
3⁄                                                       (15) 

where from the charge neutrality condition xp = xe. 

Proton fraction xp is [41]: 

  𝑥𝑝 ≅
(4𝑆(𝜌))3

 (ℏ𝑐)3(3𝜋2𝜌 )
                                                              (16) 

Using the Tolman-Oppenheimer-Volkov (TOV) equations for 

the enclosed mass m and the total pressure P [24,25] 

 
𝑑𝑃

𝑑𝑟
= −

𝐺[𝑚(𝑟) + 4𝜋3 𝑃 𝑐2][𝜖 +⁄ 𝑃 𝑐2]⁄

𝑟[𝑟 − 2 𝐺𝑚(𝑟) 𝑐2]⁄
 , 

𝑑𝑚(𝑟)

𝑑𝑟
= 4𝜋𝜖𝑟2                                                                        (17) 

where m(r) is the gravitational mass inside r, G is the 

gravitational constant and P(r) is the pressure at radius r. 

Total mass density 𝜖 and pressure P of stellar matter can be 

calculated using: 

𝑃 = 𝜌2
𝑑𝐸𝑡𝑜𝑡

𝑑𝜌
                                                                             (18) 

𝜖 = 𝜌
𝐸𝑡𝑜𝑡

𝑐2
,                                                                                 (19) 

where c is the speed of light.  

One can integrate outwards from the origin (r = 0) to the point 

r = R when the pressure becomes zero in order to solve the set 

of equations (17) for P(r) and M(r). R is defined as the star's 

coordinate radius at this point. This can be accomplished by 

using the starting pressure value at r = 0, or Pc = P(r = 0). The 

total and the radius R. The star's mass, M ≥ M(R), is dependent 

on the value of Pc. The energy density ϵ(r) (or the density mass 

ρ(r)) in terms of the pressure P(r) must also be known in order 

to do the integration. In the current work, this relationship—

which is the EOS for neutron star matter—has been derived 

using our model in several kinds of scenarios. 

3. Results and discussion 

In this study, we adopted the N3LO potential in order to 

determine the equation of state  for symmetric nuclear matter 

(Fig. 1, left panel) and pure neutron matter (Fig. 1, right panel) 

for different momentum-space cut-off values, specifically Ʌ 

= 450, 500, and 550 MeV, while considering density ρ. The 

computations utilized the typical and continuous choice of the 

single-particle potential, employing the angle average 

approximation. The momentum-space cut-offs are depicted 

by the black and red solid curves at 450 MeV for the 

continuous and conventional choices, the black and red dotted 

curves at 500 MeV for the continuous and conventional 

choices, and the black and red dashed curves at 550 MeV for 

the continuous and conventional choices. The solid points 

correspond to the calculated saturation points, whereas the 

square box represents the experimental saturation point.  Fig. 

1 shows that as density ρ increases, the binding energy per 

nucleon for SNM decreases. However, when        Ʌ= 550 MeV 

is used, the EOS assumes its correct form; the binding energy 

per nucleon falls until it hits the saturation point and then rises 

as the density ρ increases. At various levels of the momentum-

space cut-off, the curves representing the conventional choice 

are more repulsive than those representing the continuous one. 

The EOS becomes increasingly repulsive and saturated as the 

momentum-space cut-off value increases.  The binding energy 

per nucleon only takes positive values in the situation of pure 

neutron matter, as shown by the right panel of  Fig. (1) and 

increases quickly with increasing density. Especially at low 

densities, the choice of the angle average approximation has 

very little effect. Particularly at low densities, the variations 

in the momentum-space cut-off values are negligible. This is 

due to the absence of 3S1−3𝐷1  contribution for PNM which 

https://sjsci.journals.ekb.eg/
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is responsible for the bound state of the SNM.  The saturation 

points for N3LO potential in each of the situations under 

consideration are reported in Table (1). To reach the right 

saturation point, we need to make changes to the model that is 

being employed, as the predicted saturation point at Ʌ = 550 

MeV differs greatly from the empirical one. Additionally, we 

have determined the incompressibility K value at the 

saturation point using Eq. (7) at Ʌ =550 MeV. When choosing 

continuously, the K value falls within the experimental value 

range.The symmetry energy as a function of density, as 

determined by Eq. (11), is displayed in Fig. 2. At the 450 MeV 

momentum-space cut-off, the continuous choice and the 

conventional one are represented by the blue, solid, and 

dashed-dotted curves; at the 500 MeV momentum-space cut-

off, they are represented by the black dotted and dashed-

double-dotted curves; and at the 550 MeV momentum-space 

cut-off, they are represented by the red dashed and double-

dashed-dotted curves. It rises as density does. At the same 

momentum-space cut-off, the curves representing the 

continuous option and the conventional choice are nearly 

similar. This is referring to the symmetry energy's weak 

dependency on the angle average approximation selection. 

There is no effect of altering the momentum-space cut-off 

value on the symmetry energy. Furthermore, as table (1) 

illustrates, the computed symmetry energy at the saturation 

point differs considerably from the empirical one. This 

suggests that we need to make adjustments to our model. We 

observed that the accurate saturation point for SNM is not 

reproduced by non-relativistic computations based on pure 

two-body interactions  Usually, three-body forces or 

relativistic correction is introduced in order to correct this 

known deficiency. Gad used every order of NN effective field 

interaction to examine the EOS of nuclear and pure neutron 

matter in the frame of BHF in a recent work [42, 43]. He found 

that there were no saturation features in the final EOS that was 

only based on the BHF technique. Therefore, in order to 

obtain the saturation properties with an accurate picture, all 

calculations require relativistic corrections or three-body 

forces. To achieve the approved saturation qualities in the 

current work, we implement an adjustment caused by the 

simulated chrial three-body force, which is given by Eq. (12). 

Our calculations for the EOS, or the energy per particle E/A 

as a function of density ρ, after adding Chiral as 3BF (N3LO 

+ 3BF) potential at various momentum-space cut-off values Ʌ 

= 450, 500, and 550 MeV, are shown and discussed. With the 

continuous selection of the single-particle potential and the 

conventional (standard) one, the calculations were performed 

using the angle average approximation. Plotting of the EOS 

computation results for SNM is shown in Fig. (3). At the 450 

MeV momentum-space cut-off, the continuous choice and the 

conventional one are represented by the red stars and black 

circles, respectively; at the 500 MeV momentum-space cut-

off, they are represented by the red (x sign) and black (square 

sign), respectively; and at the 550 MeV momentum-space cut-

off, they are represented by the red (triangle-up sign) and the 

black (triangle-down sign), respectively. The green square 

box represents the empirical saturation point. This figure 

shows how EOS takes on its appropriate shape: the binding 

energy per nucleon for SNM reduces with increasing density 

ρ, but for EOS, it decreases until it reaches the saturation point 

and then increases. For continuous choice, the saturation point 

at ρ = 0.22 fm-3 was near the empirical value; however, for 

conventional choice, it was pushed to a higher density (0.27 

fm-3 to 0.29 fm-3).  

 

Table 1: The saturation points as a function of density for N3LO potential at Ʌ= 550 MeV. 

 

Table 2: The saturation points as a function of density for N3LO+ 3BF potential at different Ʌ. 

 

Model 𝛒𝟎    (𝐟𝐦−𝟑) 𝐄/𝐀    (𝐌𝐞𝐕) 𝐊    (𝐌𝐞𝐕) Esym    (𝐌𝐞𝐕) 

BHF (cont) 0.5713 -27.7360 262.1584 68.6487 

BHF (conv) 0.5974 -25.4314 186.6210 68.0062 

Empirical  0.17 [33] -16 ± 1 [33] 220 ± 40[28] 31.7 ± 3.2[32] 

Model 𝛒𝟎    (𝐟𝐦−𝟑) 𝐄/𝐀    (𝐌𝐞𝐕) 𝐊    (𝐌𝐞𝐕) Esym    (𝐌𝐞𝐕) 

BHF+3BF (cont450) 0.22 -16.2573 226.2 37.25804 

BHF+3BF (cont500) 0.22 -16.2492 214.3 38.07056 

BHF+3BF (cont500) 0.22 -16.1456 207.3 34.66771 

BHF+3BF (conv450) 0.29 -16.2116 239.2 41.75908 

BHF+3BF (conv500) 0.275 -15.9306 213.4 41.49356 

BHF+3BF (conv550) 0.27 -15.9022 206 39.87916 

Empirical  0.17 [33] -16 ± 1 [33]  220 ± 40[28] 31.7 ± 3.2[32] 
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Fig. 1: binding energy per nucleon E/A as a function of density ρ using N3LO (left panel) symmetric nuclear matter (right panel) pure neutron 

matter at different values of Ʌ. 

At various levels of the momentum-space cut-off, the curves 

representing the continuous choice are more repulsive than 

those representing the conventional one. The EOS becomes 

increasingly repulsive and saturated as the momentum-space 

cut-off    value decreases. The saturation point findings are 

shown in Table (2). The PNM EOS results are displayed in 

Fig. (4). With increasing density, the binding energy per 

nucleon only rises quickly to positive levels. Especially at low 

densities, the choice of the angle average approximation has 

very little effect. Particularly at low densities, the variations 

in the momentum-space cut-off values are negligible. This is 

because the PNM, which is in charge of the SNM's bound 

state, does not have a 3S1−3𝐷1  contribution. The symmetry 

energy as a function of density is displayed in Figure 5. Both 

the continuous and conventional choices are represented by 

the red solid and black dashed-dotted curves, respectively. At 

the 450 MeV momentum-space cut-off; the continuous and 

conventional choices are represented by the red dotted and 

black dashed-double-dotted curves, respectively. Further, at 

the 500 MeV momentum-space cut-off; and the continuous 

and conventional choices are represented by the red dashed 

and black double-dashed-dotted curves, respectively, at the 

550 MeV momentum-space cut-off. The figure shows that as 

density rises, so does the symmetry energy. At the same 

momentum-space cut-off, the curves representing the 

continuous choice and the standard one are nearly similar. 

This is referring to the symmetry energy's weak dependency 

on the angle average approximation selection The effect of 

altering the momentum- 

 

Fig. 3: The binding energy per nucleon E/A as a function of density 

ρ using N3LO+3BF for Symmetric nuclear matter. 

 

Fig. 2: The symmetry energy as a function of density ρ using N3LO 

potential at different values of Ʌ 
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Fig. 4: The binding energy per nucleon E/A as a function of density 

ρ using N3LO+3BF for Pure neutron matter. 

space cut-off value on the symmetry energy is negligible. 

Additionally, as table (2) shows, the computed symmetry 

energy at the saturation point is closer to the empirical one. 

 
Fig. 5: The symmetry energy as a function of density ρ using N3LO 

+ 3BF at different values of Ʌ. 

2.2 Neutron star properties 
The BHF approximation limited to two-nucleon correlations, 

overlooks certain correlation effects and exhibits breakdowns 

at both low and high densities [44, 45]. In addressing these 

challenges, Li and Schulze [46] introduced an appealing 

parametrization for the EOS. Their work demonstrates the 

effectiveness of a polynomial in accurately fitting a diverse 

array of nuclear EOSs at lower densities: 

    
𝐸

𝐴
(ρ) = a ρ + b 𝜌𝛾                                                 (20) 

The use of parameters a, b, and γ in the provided equation, 

with their corresponding numerical values reported in Table 

3, exemplifies a fitting procedure undertaken within a 

specified density range. This procedure is essential for 

tailoring the EOS to accurately represent nuclear matter 

behavior within the given density limits. Importantly, the 

fitted EOS is then applied in the current study to extrapolate 

to higher densities, proving particularly advantageous for the 

analysis of neutron star observables. This extrapolation allows 

for a more comprehensive understanding of the EOS under 

extreme conditions, providing valuable insights into the 

properties of neutron stars.Since the muon contribution does 

not materially change the overall characteristics of the neutron 

stars, the current neutron star matter is made up of n, p, and 

e− instead of include the muon in the total EOS [47]. The only 

thing keeping the neutron star in hydrostatic equilibrium 

besides gravity is the pressure created by the compressed 

nuclear materials. Moreover, a lower central density and a 

greater maximum mass are supported by a stronger EOS. 

After solving the TOV general relativistic equations for a 

spherically symmetric (nonrotating) neutron star, the 

gravitational mass of the star MG is found as a function of the 

central density ρc and the stellar radius R.The dependence of 

the neutron star masses on the stellar radius R and the core 

density ρc is shown in Figures 6 and 7, respectively, for 

momentum-space cut-offs of 450, 500, and 550 MeV. The 

conventional choice is shown in the right panel, and the 

continuous option is represented in the left panel. The lines 

with black dash, red solid and blue dash dotted indicate the 

BHF+3BF at 450, 500, and 550 cut-offs, respectively.  

According to Figures 6 and 7 show us that the upper limit 

mass of a neutron star at a core density ρc=1.5     fm-3 and 

radius R of approximately 8.911 km is Mmax ≈ 1.85Mʘ in 

the case of continuous 450 computations. Furthermore, for 

continuous 500, it is found that Mmax ≈ 1.76 Mʘ at central 

density of ρc = 1.5 fm-3 with a radius R ≈ 8.931 km. For 

continuous 550, a maximum mass of star is Mmax ≈ 1.6 Mʘ 

at central density of ρc =1.5 fm-3 with a radius R ≈ 8.551 km. 

In the case of conventional 450, Mmax of NS ≈ 1.84 Mʘ at 

central density of ρc =1.5 fm-3 with a radius R ≈ 8.821 km. 

Further for conventional 500, Mmax ≈ 1.51 Mʘ at a central 

density of ρc =1.5 fm-3 and a radius R ≈ 8.631 km were found. 

Finally, for a typical 550, Mmax of NS ≈ 1.597 Mʘ at a 

central density of ρc =1.5 fm-3 and a radius R ≈ 8.591 km 

were found. Table 4 provides a summary of all the findings. 

The condition that EOS models for neutron star materials 

yield maximum stable masses of at least 2 Mʘ has been 

confirmed by observations of big stars. Many of the softer 

theoretical EOS models were ruled out by observations of 

huge neutron stars because these models are known as "stiff," 

which means they have a large pressure for a given density. 

MSP J0740+6620, one of the heaviest millisecond pulsars 

recorded to far, with a measured mass of 2.14−0.09
+0.10 Mʘ, is an 

example of such enormous observations [48]. Moreover, there 

have never been direct measurements of the radius of a 

neutron star, and estimating the radius by a variety of methods 

has significant uncertainty in comparison to accurate 

measurements of mass. The radius of a purely hadronic 

neutron star is bound to be 12.0km < R < 13.45km, according 

to recent calculations by Most et al. [49] using a new 

approach. . Abbott et al. [50] calculated the neutron star radius 

at 10.5 km < R < 13.3km at the same time. A new estimate of 

8.9 km < R < 13.2 km for the common NS radius was obtained 

by De et al. [51]. This indicates that certain NS obsarvables 

are not well supported by the current model. We can replace 

the current model if we so want. 

https://sjsci.journals.ekb.eg/
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Table (3): Equation (20) is used to fit the parameters of the EOS for 

SNM and PNM with BHF + (chiral 3BF) model. 

 Cut-off A b γ 

SNM 

continuous 

450+ 3BF -208.922 307.218 1.5430 

500+ 3BF -232.953 320.659 1.4629 

550+ 3BF -246.728 329.479 1.4242 

PNM 

continuous 

450+ 3BF 77.035 117.071 2.2213 

500+ 3BF 76.762 106.025 2.0260 

550+ 3BF 70.564 108.171 2.3682 

SNM 

conventional 

450+ 3BF -138.585 182.583 1.6400 

500+ 3BF -173.713 217.098 1.4872 

550+ 3BF -188.427 229.919 1.4383 

PNM 

conventional 

450+ 3BF 77.864 57.243 2.3910 

500+ 3BF 81.056 55.566 2.0738 

550+ 3BF 77.476 61.541 2.2926 

 

 
Fig. 6: Neutron star gravitational masses plotted as a function of the 

stellar radius. 

 
Fig. 7: Neutron star gravitational masses as a function of the central 

density ρ. 

 

Table (4): The max value of radius R, central density ρc, and mass 
Mmax of the neutron star. 

 Cut-off 
Mmax 

(Mʘ) 

R 

(Km) 

ρc 

(fm-3) 

continuous 

450+ chiral 1.85 8.911 1.5  

500+ chiral 1.76 8931 1.5  

550+ chiral 1.84 8.821 1.5  

conventional 

450+ chiral 1.6 8.551 1.5  

500+ chiral 1.51 8.631 1.5  

550+ chiral 1.597 8.591 1.5  

4. Conclusion 

We conclude this analysis by pointing out that the EOS is 

extremely sensitive to any change in the momentum-space 

cutoff, particularly at high densities. It was discovered that the 

EOS of SNM exhibits a greater momentum-space cut-off 

dependence as compared to that of PNM. When employing 

the angle average approximation with his two options, 

increasing the momentum-space cut-off number has an 

improvement; EOS takes on its correct shape and saturates at 

Ʌ = 550 MeV.This complements the earlier research, however 

the impacts of this augmentation are not particularly strong 

near the empirical saturation point. Future studies will 

investigate a correction to the proposed model that takes this 

difficulty into account, including three-body force and Dirac 

contributions corrections. The correct binding energy per 

nucleon and the symmetry energy values at the saturation are 

still missing. The TOV equation of general relativity, which 

yields the mass and radius of neutron stars, can be numerically 

solved using the current EOSs of nuclear and pure neutron 

matter. It turns out that the stiffness of the proposed EOS has 

a critical role in determining both maximum stable masses and 

radii. An additional significant outcome is that NS parameters, 

including radius and total mass, are calculable using 

microscopic models. Additionally, the results of the non-

relativistic EOS calculation may appear softer, and a uniform 

EOS calculation is required to fully characterize the features 

of the neutron star and its structure [52,54]. 
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