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Abstract: The goal of this work is to study the rotation of two-dimensional deformation in a semi-infinite semiconducting medium 

by ramp-type heating. The interaction of thermal-elastic mechanical-plasma waves is utilized in the photo-thermoelasticity theory 

model. The governing equations are presented in 2D and are of the thermal ramp type. The normal mode and approximation 

eigenvalue approaches have been applied to solve the given problem. The different physical quantities, such as displacement 

components, stress components, and the temperature distribution have been presented graphically using MATLAB software. These 

results were compared with previous results in the same direction, and it was found that the treatment method for the aforementioned 

problem may form a basis for examining the effects of rotation, angular frequency, time, and ramp-type heating parameter on a 

thermally elastic body. 
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1. Introduction 

In recent times, extensive research has focused on materials 

science, exploring their physical properties and wave 

propagation. Semiconductors, crucial in modern sectors like 

electronics, electrical circuits, solar cells, and transistors, 

occupy a unique position. Unlike insulators (such as glass) or 

natural conductors (like aluminum), semiconductors exhibit 

intermediate behavior. Early studies considered materials like 

silicon and carbon as elastic substances, analyzed through 

thermoelastic theories. However, after a thorough examination 

of these materials, it became clear that their resistance to 

electrical conduction is affected by temperature changes, as the 

thermal effect on these materials causes the excitation of free 

electrons on the surface, resulting in wide transformations 

known as electronic deformation (ED). During the process of 

electronic distortion, what is known as the carrier density is 

produced, which causes plasma waves, and in this case, the 

photothermal theory (PT) can be applied. Mechanical loads are 

generated within the material during thermal excitation 

processes, causing so-called thermoelastic deformation (TE). As 

a result of all of this, the interaction between thermal elasticity 

theory and PT theory can be studied in what is known as the 

photothermal elasticity theory of semiconductors. A good 

number of researchers have shown their dedication to this 

direction. Hobiny et al. [1] studied the photo-thermo-elastic 

distributed waves in a semiconductor medium due to the ramp-

type heating. In the above studies, the coupling between the 

electrons and holes free charges under the impact of magnetic 

field is neglected when thermo-diffusive processes occur in 

semiconductors. However, the distribution of electrons and 

holes on the free surface of semiconductors is important and 

cannot be ignored when semiconductors are studied [2–6]. 

Researchers have previously been interested in deformation 

in a material caused by ramp type heating. Authors have found 

solutions to a variety of ramp-type loading and heating 

problems. Generalized thermoelasticity was developed by 

Youssef et al. [7–11] for infinite materials heated by ramp type 

in many external fields, where the thermal conductivity is 

varied. The physical characteristics of semiconductor materials 

that are dependent on temperature fluctuations under the 

influence of Hall current have not been taken into account in 

previous studies due to the overlap between photothermal and 

thermoelasticity theories. One generalized theory of 

thermoelasticity is developed by Lord and Shulman (L–S) [12]. 

A second theory with two thermal relaxation time 

parameters is produced by Green and Lindsay (G–L) [13]. The 

discussion of such extended theories was then covered in a few 

pieces that published as Chandrasekharaiah [14] and Hetnarski 

and Ignaczak [15]. Yahya and Abd Alla have investigated the 

radial vibrations of a spinning elastic hollow cylinder using the 

elasticity theory [16]. Numerous applications of the 

thermoelectricity theory may be found in the fields of 

geophysics, building constructions, and the behavior of sensitive 

biological tissues. Rotation's impact on a generalized 

thermoelastic medium with hydrostatic starting stress under 

ramp-type heating and loading was examined by Ailawalia and 

Narah [17]. The effects of variable thermal conductivity and 

hyperbolic two-temperature theory during the magneto-

photothermal theory of semiconductors induced by laser pulses 

and some related studies in this direction were discussed by 

other researchers [18–23]. 

In the present work, using the photothermal model, 

deformation in a two-dimensional, isotropic, rotating medium 
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subjected to ramp-type heating is investigated. The medium is 

assumed to be semiconductor and exposed to ramp-type heating, 

rotation and photo-excited. The vibrations caused by photo-

excitation during photothermal theory produce changes in wave 

propagation of physical variables. The normal mode and 

approximate eigenvalue techniques were used to obtain exact 

solutions for the displacement, thermal stress, carrier density 

(plasma), and temperature distributions. To determine the 

complete solutions of physical quantities subject to heating ramp 

type, the problem boundary conditions are used. Furthermore, 

the MATLAB software is employed in this case to represent 

temperature, carrier density, displacement distributions, and 

thermal stress for the model under discussion graphically. This 

model is very useful for scientists and engineers to develop high-

quality semiconductor materials that many modern industries 

rely on and that have multiple uses in electrical circuits and solar 

cells (photovoltaics).   

2. Basic equations 

Suppose that the medium being studied rotates in a regular 

manner. The angular velocity in this case is Ω
→
= Ω n→, where n is 

a unit vector that describes the rotation axis's direction. The 

rotation axis is the axis perpendicular to the plane, and the whole 

body rotates with a uniform angular velocity 𝛺
→
= 𝛺 𝑛→. 

Consequently, there are two additional requirements for the 

elastodynamic equations: Centripetal acceleration (𝛺
→
^(𝛺
→
^ 𝑢→)) 

caused by just time-varying motion, and Cariole's acceleration 

(2 𝛺
→
^ 𝑢̇
→
) caused by a moving reference frame, where 𝑢→ =

(𝑢, 𝑣, 0) is the dynamic displacement vector. Song et al. [21] 

present the constitutive equations for coupled plasma, thermal, 

and elastic transport in a medium with isotropic and 

homogeneous characteristics. 

𝜌
𝜕2𝑢(𝑟,t)

𝜕𝑡2
+ 𝜌(𝛺

→
^(𝛺
→
^ 𝑢→)) + 2𝜌 𝛺

→
^ 𝑢̇
→
= 𝜇∇2𝑢⃗⃗(𝑟, 𝑡) + (𝜆 +

𝜇)∇(∇. 𝑢⃗⃗(𝑟, 𝑡)) − γ∇T(𝑟, 𝑡) − 𝛿𝑛∇N(𝑟, t),                                   (1) 

𝜕N(𝑟,t)

𝜕𝑡
= 𝐷𝑒∇

2N(𝑟, t) −
1

𝜏
N(𝑟, t)+kT(𝑟, t),                                              (2) 

𝜌𝑐𝑒
𝜕T(𝑟,t)

𝜕𝑡
= 𝑘∇2T(𝑟, t) −

𝐸𝑔

𝜏
N(𝑟, t) + γ𝑇°∇.

𝜕𝑢(𝑟,t)

𝜕𝑡
,                              (3) 

Furthermore, we investigate the plane strain problem with all 

field variables dependent on (𝑥, 𝑦, 𝑡). For 2-D, we use the 

displacement vector 𝑢⃗⃗ = (𝑢, 𝑣, 0) and 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝑣 =
𝑣(𝑥, 𝑦, 𝑡). Equations (1)-(3) are reduced to 
 

𝜌 (
𝜕2𝑢

𝜕𝑡2
− Ω2𝑢 + 2Ω

𝜕𝑣

𝜕𝑡
) = (𝜆 + 2𝜇)

𝜕2𝑢

𝜕𝑥2
+ (𝜆 + 𝜇)

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝜇

𝜕2𝑢

𝜕𝑦2
−

𝛾
𝜕𝑇

𝜕𝑥
− 𝛿𝑛

𝜕𝑁

𝜕𝑥
,                                                                              (4) 

𝜌 (
𝜕2𝑣

𝜕𝑡2
− Ω2𝑣 − 2Ω

𝜕𝑢

𝜕𝑡
) = (𝜆 + 2𝜇)

𝜕2𝑣

𝜕𝑦2
 + (𝜆 + 𝜇)

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
−

𝛾
𝜕𝑇

𝜕𝑦
− 𝛿𝑛

𝜕𝑁

𝜕𝑦
,                                                                                                              (5) 

 
𝜕N

𝜕𝑡
= 𝐷𝑒∇

2N −
1

𝜏
 N +k T,                                                          (6) 

𝜌𝑐𝑒
𝜕𝑇

𝜕𝑡
= 𝐾∇2T −

𝐸𝑔

𝜏
N+ γ𝑇°

𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
),                                   (7) 

The stress components are: 

𝜎𝑥𝑥 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
+ 𝜆

𝜕𝑣

𝜕𝑦
− (3𝜆 + 2𝜇)(𝛼𝑇𝑇 + 𝑑𝑛𝑁),                   (8) 

𝜎𝑦𝑦 = (𝜆 + 2𝜇)
𝜕𝑣

𝜕𝑦
+ 𝜆

𝜕𝑢

𝜕𝑥
− (3𝜆 + 2𝜇)(𝛼𝑇𝑇 + 𝑑𝑛𝑁),              (9) 

𝜎𝑥𝑦 = 𝜇(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
),                                                                     (10) 

𝑒 = (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
).                                                                         (11) 

where λ and μ are Lame's constant, ρ is the density, 𝜎𝑖𝑗 are the 

stress components, 𝑇 is the temperature, 𝑡 is the time, 𝑁  is the 

carrier density, 𝐷𝑒  is the carrier diffusion coefficient, 𝐸𝑔 is the 

energy gap of the semiconductor, 𝜏 is the photo-generated 

carrier lifetime,  𝑐𝑒 is the specific heat, 𝑢, 𝑣 are the displacement 

components, 𝑇° is the medium's temperature, k is the thermal 

conductivity, 𝛼𝑇 is the linear thermal expansion factor and 𝛾 =

(3𝜆 + 2𝜇)𝛼𝑇, 𝛿𝑛 is the variation in the deformation potential 

between the valence and conduction bands, and 𝛿𝑛 = (3𝜆 +

2𝜇)𝑑𝑛.  

  

Fig.1. Schematic of the problem. 
 

Now, the non-dimensional quantities are defined as follows: 
 

(𝑥′, 𝑦′) =
1

𝑐𝑇𝑡
∗ (𝑥, 𝑦), 𝑡

′ =
𝑡

𝑡∗
, (𝑢′, 𝑣′) =

1

𝑐𝑇𝑡
∗ (𝑢, 𝑣), 𝑁

′ =

𝛿𝑛𝑁

(𝜆+2𝜇)
, 𝛺′ = 𝑡∗𝛺, 𝑐𝑇

2 =
(𝜆+2𝜇)

𝜌
, 𝑇′ =

𝛾𝑇

(𝜆+2𝜇)
, 𝜎𝑖𝑗
′ =

𝜎𝑖𝑗

𝜇 
, 𝑡∗ =

𝐾

𝜌𝑐𝑒𝑐𝑇
2. (12)  

Applying the quantities in Equation (12) to Equations (4-10) 

yields 
 

(
𝜕2𝑢

𝜕𝑡2
− Ω2𝑢 + 2Ω

𝜕𝑣

𝜕𝑡
) =

𝜕2𝑢

𝜕𝑥2
 + 𝑎11

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝑎12

𝜕2𝑢

𝜕𝑦2
−
𝜕𝑇

𝜕𝑥
−
𝜕𝑁

𝜕𝑥
,        (13) 

(
𝜕2𝑣

𝜕𝑡2
− Ω2𝑣 − 2Ω

𝜕𝑢

𝜕𝑡
) =

𝜕2𝑣

𝜕𝑦2
 + 𝑎11

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑎12

𝜕2𝑣

𝜕𝑥2
−
𝜕𝑇

𝜕𝑦
−
𝜕𝑁

𝜕𝑦
,        (14) 

 ∇2N − 𝑎21 N + 𝑎22T − 𝑎23
𝜕N

𝜕𝑡
= 0,                                                       (15) 

∇2T − 𝑎31 N + 𝑎32
𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
) −

𝜕𝑇

𝜕𝑡
= 0,                                    (16) 

𝜎𝑥𝑥 = 𝑎41
𝜕𝑢

𝜕𝑥
+ 𝑎42

𝜕𝑣

𝜕𝑦
− 𝑎41(𝑇 + 𝑁),                                        (17) 

𝜎𝑦𝑦 = 𝑎41
𝜕𝑣

𝜕𝑦
+ 𝑎42

𝜕𝑢

𝜕𝑥
− 𝑎41(𝑇 + 𝑁),                                                     (18) 

𝜎𝑥𝑦 = (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
).                                                                                          (19) 
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where 

𝛻2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
, 𝑎11 =

𝜆+𝜇

𝜆+2𝜇
, 𝑎12 =

𝜇

𝜆+2𝜇
, 𝑎21 =

𝑐𝑇
2𝑡∗

2

𝜏𝐷𝑒
, 𝑎22 =

𝑘𝑐𝑇
2𝑡∗

2
𝛿𝑛

𝛾𝐷𝑒
, 𝑎31 =

𝐸𝑔𝛾𝑐𝑇
2𝑡∗

𝑘𝜏𝛿𝑛
, 𝑎32 =

γ2𝑇°𝑐𝑇𝑡
∗

𝑘(𝜆+2𝜇)
. 

To keep things simple, the prime was also removed. 

Differentiate with respect to 𝑥 Eqs. (13-19) can be written by 

using Eq. (11) as follow: 
 

(
𝜕3𝑢

𝜕𝑥𝜕𝑡2
− Ω2

𝜕𝑢

𝜕𝑥
+ 2Ω

𝜕2𝑣

𝜕𝑥𝜕𝑡
) = 𝑎

𝜕3𝑢

𝜕𝑥3
+ 𝑎11

𝜕2𝑒

𝜕𝑥2
+ 𝑎12𝛻

2 𝜕𝑢

𝜕𝑥
−
𝜕2𝑇

𝜕𝑥2
−

𝜕2𝑁

𝜕𝑥2
,                                                                                                                      (20) 

(
𝜕3𝑣

𝜕𝑦𝜕𝑡2
− Ω2

𝜕𝑣

𝜕𝑦
− 2Ω

𝜕2𝑢

𝜕𝑦𝜕𝑡
) = 𝑎

𝜕3𝑣

𝜕𝑦3
 + 𝑎11

𝜕2𝑒

𝜕𝑦2
+ 𝑎12𝛻

2 𝜕𝑣

𝜕𝑦
−
𝜕2𝑇

𝜕𝑦2
−

𝜕2𝑁

𝜕𝑦2
,                                                                                                                      (21) 

∇2N − 𝑎21 N + 𝑎22T − 𝑎23
𝜕N

𝜕𝑡
= 0,                                                         (22) 

∇2T − 𝑎31 N + 𝑎32
𝜕𝑒

𝜕𝑡
−
𝜕𝑇

𝜕𝑡
= 0,                                                         (23) 

𝜎𝑥𝑥 = 𝑎41
𝜕𝑢

𝜕𝑥
+ 𝑎42

𝜕𝑣

𝜕𝑦
− 𝑎41(𝑇 + 𝑁),                                                     (24) 

𝜎𝑦𝑦 = 𝑎41
𝜕𝑢

𝜕𝑥
+ 𝑎42

𝜕𝑣

𝜕𝑦
− 𝑎41(𝑇 + 𝑁),                                       (25) 

𝜎𝑥𝑦 = (
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
).                                                                      (26) 

3. Solution of the problem 

In this part, the normal mode approach is used, which has the 

benefit of obtaining accurate solutions without any assumed 

limits on the field variables. The physical variable solutions can 

be analyzed in terms of normal modes as follows: 
 

(𝑢, 𝑣, 𝑇, 𝑁, 𝜎𝑖𝑗)(𝑥, 𝑦, 𝑡) = (𝑢
∗, 𝑣∗, 𝑇∗, 𝑁∗, 𝜎𝑖𝑗

∗)𝑒(𝜔𝑡+𝑖𝑏𝑦).     (27) 
 

where 𝜔, 𝑖, 𝑎𝑛𝑑 𝑏 refer to the angular frequency, the imaginary 

number and the wave number in the 𝑦 - direction. Applying Eq. 

(27) in Eqs. (20-23), we have 
 

𝑑2𝑢∗

𝑑𝑥2
= 𝜂1𝑢

∗ + 𝜂2𝑣
∗ + 𝜂3

𝑑𝑣∗

𝑑𝑥
+ 𝜂4

𝑑𝑇∗

𝑑𝑥
+ 𝜂4

𝑑𝑁∗

𝑑𝑥
,                                  (28)

 
𝑑2𝑣∗

𝑑𝑥2
= 𝜂5𝑢

∗ + 𝜂6𝑣
∗ + 𝜂7𝑇

∗ + 𝜂7𝑁
∗ + 𝜂8

𝑑𝑢∗

𝑑𝑥
,                                      (29) 

𝑑2𝑁∗

𝑑𝑥2
= 𝛽𝑁∗ − 𝑎22𝑇

∗,                                                                                  (30)

 
𝑑2𝑇∗

𝑑𝑥2
= 𝜂9𝑣

∗ + 𝜂10𝑇
∗ + 𝜂11

𝑑𝑢∗

𝑑𝑥
+ 𝜂12𝑁

∗.                                               (31)

 
 where 

𝜂1 =
𝜔2+a12b

2−𝛺2

𝛼
, 𝜂2 =

2𝜔𝛺

𝛼
, 𝜂3 =

−𝑎11𝑏𝑖

𝛼
, 𝜂4 =

1

𝛼
, 𝜂5 =

−2𝜔𝛺

𝑎12
, 𝜂6 =

𝑎𝑏2+𝑎11𝑏
2+𝑎12𝑏

2+𝜔2𝑏𝑖−𝛺2

𝑎12
, 𝜂7 =

𝑖𝑏

𝑎12
, 𝜂8 =

−𝑖𝑏𝑎11

𝑎12
 , 𝜂9 = −𝑎32𝜔𝑏𝑖,  𝜂10 = 𝑏

2 + 𝜔, 𝜂11 = −𝑎32𝜔, 𝜂12 =

𝑎31, 𝑎 = 1 − 𝑎11 − 𝑎12, 𝛼 = 𝑎 + 𝑎11 + 𝑎12, 𝛽 = 𝑎21 + 𝑎23𝜔 +

𝑏2 . 

Equations (28-31), can be expressed as a differential equation 

with a vector-matrix as below:   
 

𝑑𝐿̃

𝑑𝑥
= 𝐴𝐿̃.                                                                                                            (32) 

where 

𝐿̃ =

(

 
 
 
 
 
 
 
 

𝑢∗

𝑣∗

𝑇∗

𝑁∗
𝑑𝑢∗

𝑑𝑥
𝑑𝑣∗

𝑑𝑥
𝑑𝑇∗

𝑑𝑥
𝑑𝑁∗

𝑑𝑥 )

 
 
 
 
 
 
 
 

, 𝐴 =

(

 
 
 
 
 

0
0
0
0
𝜂1
𝜂5
0
0

      

0
0
0
0
𝜂2
𝜂6
0
𝜂9

      

0
0
0
0
0
𝜂7
−𝑎22
𝜂10

     

0
0
0
0
0
𝜂7
𝛽
𝜂12

     

1
0
0
0
0
𝜂8
0
𝜂11

     

0
1
0
0
𝜂3
0
0
0

     

0
0
1
0
𝜂4
0
0
0

     

0
0
0
1
𝜂4
0
0
0

  

)

 
 
 
 
 

  (33) 

We now employ the eigenvalue approach, as in Das and 

Bhakta31 to solve Eq. (32), the characteristic equation of matrix 

A, which takes the form  
 

𝜆8 +𝑚1𝜆
6+𝑚2𝜆

5 +𝑚3𝜆
4 +𝑚4𝜆

3 +𝑚5𝜆
2 +𝑚6𝜆 + 𝑚7 = 0.    (34) 

where 𝑚𝑖 , 𝑖 = 1,2,3,4,5,6,7 are defined in Appendix I. The 

roots of Eq. (34) are as follows: 
 

 𝜆𝑖 = ±𝜆1, ±𝜆2, ±𝜆3, ±𝜆4, 𝑖 = 1,2,3,4.  

The appropriate eigenvector 𝜒 = [𝜒1, 𝜒2, 𝜒3, 𝜒4, 𝜒5, 𝜒6, 𝜒7, 𝜒8]
𝑇, 

which corresponds to eigenvalue, may be defined as 

 

𝜒 =

(

 
 
 
 
 
 
 
 
 
 
 

𝛽(𝜂6−𝜆
2)[𝛽𝜆2𝜂7+(𝑎22+𝜆

2)𝜆2𝜂7+𝛽𝜂10(𝜂5−𝜆
2)+(𝜂12−𝜆

2)(𝜂5−𝜆
2)(𝑎22+𝜆

2)]

𝛽𝜆(𝜂5−𝜆2)
− 𝜖

−[𝛽𝜆2𝜂7+(𝑎22+𝜆
2)𝜆2𝜂7+𝛽𝜂10(𝜂5−𝜆

2)]

𝜆

𝛽𝜆2(𝜂6−𝜆
2)+𝛽𝜂9(𝜂5−𝜆

2)

𝜆

(𝑎22+𝜆
2)[𝛽𝜆2(𝜂6−𝜆

2)+𝛽𝜂9(𝜂5−𝜆
2)]

𝛽𝜆

𝛽(𝜂6−𝜆
2)[𝛽𝜆2𝜂7+(𝑎22+𝜆

2)𝜆2𝜂7+𝛽𝜂10(𝜂5−𝜆
2)+(𝜂12−𝜆

2)(𝜂5−𝜆
2)(𝑎22+𝜆

2)]

𝛽(𝜂5−𝜆2)
− 𝜖

−[𝛽𝜆2𝜂7 + (𝑎22 + 𝜆
2)𝜆2𝜂7 + 𝛽𝜂10(𝜂5 − 𝜆

2)]

𝛽𝜆2(𝜂6 − 𝜆
2) + 𝛽𝜂9(𝜂5 − 𝜆

2)
(𝑎22+𝜆

2)

𝛽
[𝛽𝜆2(𝜂6 − 𝜆

2) + 𝛽𝜂9(𝜂5 − 𝜆
2)] )

 
 
 
 
 
 
 
 
 
 
 

(35) 

where, 

 𝜖 =
[𝛽𝜂7+(𝑎22+𝜆

2)𝜂7][𝛽𝜆
2(𝜂6−𝜆

2)+𝛽𝜂9(𝜂5−𝜆
2)]

𝛽(𝜂5−𝜆
2)

. 

 

The eigenvector 𝑣 that corresponds to the eigenvalue from Eq. 

(35) is easily determined. The following notations are used in 

the remainder of the work: 
 

𝜒1 = [𝜒]𝜆=𝜆1 ,  𝜒2 = [𝜒]𝜆=𝜆2 ,  𝜒3 = [𝜒]𝜆=𝜆3 ,  𝜒4 = [𝜒]𝜆=𝜆4 ,  𝜒5 =

[𝜒]𝜆=𝜆5 ,  𝜒6 = [𝜒]𝜆=𝜆6 , 𝜒7 = [𝜒]𝜆=𝜆7 , 𝜒8 = [𝜒]𝜆=𝜆8 .  

Taking the regularity criteria at infinity into account, the 

solution to equation (33) is as follows: 
 

𝑉 = 𝐴1𝜒1𝑒
−𝜆1𝑥 + 𝐴2𝜒2𝑒

−𝜆2𝑥 + 𝐴3𝜒3𝑒
−𝜆3𝑥 + 𝐴4𝜒4𝑒

−𝜆4𝑥 , (𝑥 ≥ 0)   (36) 

where 𝐴1, 𝐴2, 𝐴3, 𝐴4 are constants determined by the problem's 

boundary conditions. From Eqs. (33), (34) and (36), we have 
 

𝑢∗(𝑥) = 𝐴1𝜒11𝑒
−𝜆1𝑥 + 𝐴2𝜒12𝑒

−𝜆2𝑥 + 𝐴3𝜒13𝑒
−𝜆3𝑥 + 𝐴4𝜒14𝑒

−𝜆4𝑥, 

𝑣∗(𝑥) = 𝐴1𝜒21𝑒
−𝜆1𝑥 + 𝐴2𝜒22𝑒

−𝜆2𝑥 + 𝐴3𝜒23𝑒
−𝜆3𝑥 + 𝐴4𝜒24𝑒

−𝜆4𝑥, 

𝑇∗(𝑥) = 𝐴1𝜒31𝑒
−𝜆1𝑥 + 𝐴2𝜒32𝑒

−𝜆2𝑥 + 𝐴3𝜒33𝑒
−𝜆3𝑥 + 𝐴4𝜒34𝑒

−𝜆4𝑥, 
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𝑁∗(𝑥) = 𝐴1𝜒41𝑒
−𝜆1𝑥 + 𝐴2𝜒42𝑒

−𝜆2𝑥 + 𝐴3𝜒 43𝑒
−𝜆3𝑥 +

𝐴4𝜒44𝑒
−𝜆4𝑥, 𝜎𝑥𝑥

∗(𝑥) = −𝑎41(𝐴1𝜆1𝜒11𝑒
−𝜆1𝑥 + 𝐴2𝜆2𝜒12𝑒

−𝜆2𝑥 +

𝐴3𝜆3𝜒13𝑒
−𝜆3𝑥 + 𝐴4𝜆4𝜒14𝑒

−𝜆4𝑥) + 𝑖𝑏𝑎42(𝐴1𝜒21𝑒
−𝜆1𝑥 +

𝐴2𝜒22𝑒
−𝜆2𝑥 + 𝐴3𝜒23𝑒

−𝜆3𝑥 + 𝐴4𝜒24𝑒
−𝜆4𝑥) − 𝑎41(𝐴1𝜒31𝑒

−𝜆1𝑥 +

𝐴2𝜒32𝑒
−𝜆2𝑥 + 𝐴3𝜒33𝑒

−𝜆3𝑥 + 𝐴4𝜒34𝑒
−𝜆4𝑥) − 𝑎41(𝐴1𝜒41𝑒

−𝜆1𝑥 +

𝐴2𝜒42𝑒
−𝜆2𝑥 + 𝐴3𝜒43𝑒

−𝜆3𝑥 + 𝐴4𝜒44𝑒
−𝜆4𝑥),  

𝜎𝑦𝑦
∗(𝑥) = −𝑎41(𝐴1𝜆1𝜒21𝑒

−𝜆1𝑥 + 𝐴2𝜆2𝜒22𝑒
−𝜆2𝑥 +

𝐴3𝜆3𝜒23𝑒
−𝜆3𝑥 + 𝐴4𝜆4𝜒24𝑒

−𝜆4𝑥) + 𝑖𝑏𝑎42(𝐴1𝜒11𝑒
−𝜆1𝑥 +

𝐴2𝜒12𝑒
−𝜆2𝑥 + 𝐴3𝜒13𝑒

−𝜆3𝑥 + 𝐴4𝜒14𝑒
−𝜆4𝑥) − 𝑎41(𝐴1𝜒31𝑒

−𝜆1𝑥 +

𝐴2𝜒32𝑒
−𝜆2𝑥 + 𝐴3𝜒33𝑒

−𝜆3𝑥 + 𝐴4𝜒34𝑒
−𝜆4𝑥) − 𝑎41(𝐴1𝜒41𝑒

−𝜆1𝑥 +

𝐴2𝜒42𝑒
−𝜆2𝑥 + 𝐴3𝜒43𝑒

−𝜆3𝑥 + 𝐴4𝜒44𝑒
−𝜆4𝑥),  

𝜎𝑥𝑦
∗(𝑥) = 𝑖𝑏(𝐴1𝜒11𝑒

−𝜆1𝑥 + 𝐴2𝜒12𝑒
−𝜆2𝑥 + 𝐴3𝜒13𝑒

−𝜆3𝑥 +

𝐴4𝜒14𝑒
−𝜆4𝑥) − (𝐴1𝜆1𝜒21𝑒

−𝜆1𝑥 + 𝐴2𝜆2𝜒22𝑒
−𝜆2𝑥 +

𝐴3𝜆3𝜒23𝑒
−𝜆3𝑥 + 𝐴4𝜆4𝜒24𝑒

−𝜆4𝑥).                                                          (37) 

where 𝜒𝑖𝑗 , 𝑖 = 1,2,3,4 are defined in Appendix II. 

4. Boundary conditions  

In this part, we will apply these boundary conditions to our 

problem. We assume that the free surface in our suggested 

model is traction-free.  

(1) The mechanical normal stress that is traction free can be 

rewritten in the following form:  𝜎𝑥𝑥 = 0             at 𝑥 = 0 , 

(2) Also, the mechanical shear stress takes the form 𝜎𝑥𝑦 = 0 at 

𝑥 = 0, 
(3) The thermal boundary condition due to ramp-type heating 

at the free surface is as follows  𝑇 = 𝑇1
𝑡

𝑡𝜊
           at   𝑥 = 0, 

where 𝑇1 is an arbitrary constant.                                  (38) 

(4) The plasma condition (carrier density) can be expressed as 

during the photo-thermal  
𝜕𝑁

𝜕𝑥
=

𝑐

𝐷𝑒
𝑁                    at 𝑥 = 0 . 

Combining equations (37) and (38) yields four equations for the 

constants 𝐴1, 𝐴2, 𝐴3 and 𝐴4. 
 

𝑡1𝐴1 + 𝑡2𝐴2 + 𝑡3𝐴3 + 𝑡4𝐴4 = 0,  

𝑡5𝐴1 + 𝑡6𝐴2 + 𝑡7𝐴3 + 𝑡8𝐴4 = 0,  

𝜒31𝐴1 + 𝜒32𝐴2 + 𝜒33𝐴3 + 𝜒34𝐴4 = 𝑡9,  

𝑡10𝐴1 + 𝑡11𝐴2 + 𝑡12𝐴3 + 𝑡13𝐴4 = 0.                                         (39) 

where, 
𝑡1 = −𝑎41𝜆1𝜒11 + 𝑖𝑏𝑎42𝜒21 − 𝑎41𝜒31 − 𝑎41𝜒41,

  
𝑡2 =

−𝑎41𝜆2𝜒12 + 𝑖𝑏𝑎42𝜒22 − 𝑎41𝜒32 − 𝑎41𝜒42, 𝑡3 = −𝑎41𝜆3𝜒13 +

𝑖𝑏𝑎42𝜒23 − 𝑎41𝜒33 − 𝑎41𝜒43, 
  
𝑡4 = −𝑎41𝜆4𝜒14 + 𝑖𝑏𝑎42𝜒24 −

𝑎41𝜒34 − 𝑎41𝜒44, 

𝑡5 = 𝑖𝑏𝜒11 − 𝜆1𝜒21,  𝑡6 = 𝑖𝑏𝜒12 − 𝜆2𝜒22, 𝑡7 = 𝑖𝑏𝜒13 − 𝜆3𝜒23,  

𝑡8 = 𝑖𝑏𝜒14 − 𝜆4𝜒24, 𝑡9 = 𝑇1
𝑡∗𝑡𝛾

𝑡𝜊(𝜆+2𝜇)
𝑒−(𝜔𝑡+𝑖𝑏𝑦), 𝑡10 = −𝜆1𝜒41 −

𝑐

𝐷𝑒
𝜒41,

  
𝑡11 = −𝜆2𝜒42 −

𝑐

𝐷𝑒
𝜒42,

 
𝑡12 = −𝜆3𝜒43 −

𝑐

𝐷𝑒
𝜒43,

 
𝑡13 =

−𝜆4𝜒44 −
𝑐

𝐷𝑒
𝜒44. 

To calculate the constants 𝐴1, 𝐴2, 𝐴3 and 𝐴4, Cramer's method 

is applied as there is one non-homogeneous equation in Eq. (39).  
 

𝐴1 =
𝛥𝐴1

𝛥
, 𝐴2 =

𝛥𝐴2

𝛥
, 𝐴3 =

𝛥𝐴3

𝛥
, 𝐴4 =

𝛥𝐴4

𝛥
 .                                  (40) 

 

Where 
 

𝛥 = −𝑡13𝑡3𝑡6𝜒31 + 𝑡12𝑡4𝑡6𝜒31 + 𝑡13𝑡2𝑡7𝜒31 − 𝑡11𝑡4𝑡7𝜒31 −

𝑡12𝑡2𝑡8𝜒31 + 𝑡11𝑡3𝑡8𝜒31 + 𝑡13𝑡3𝑡5𝜒32 − 𝑡12𝑡4𝑡5𝜒32 −

𝑡1𝑡13𝑡7𝜒32 + 𝑡10𝑡4𝑡7𝜒32 + 𝑡1𝑡12𝑡8𝜒32 − 𝑡10𝑡3𝑡8𝜒32 −

𝑡13𝑡2𝑡5𝜒33 + 𝑡11𝑡4𝑡5𝜒33 + 𝑡1𝑡13𝑡6𝜒33 − 𝑡10𝑡4𝑡6𝜒33 −

𝑡1𝑡11𝑡8𝜒33 + 𝑡10𝑡2𝑡8𝜒33 + 𝑡12𝑡2𝑡5𝜒34 − 𝑡11𝑡3𝑡5𝜒34 −

𝑡1𝑡12𝑡6𝜒34 + 𝑡10𝑡3𝑡6𝜒34 + 𝑡1𝑡11𝑡7𝜒34 − 𝑡10𝑡2𝑡7𝜒34,  

𝛥𝐴1 = −𝑡13𝑡3𝑡6𝑡9 + 𝑡12𝑡4𝑡6𝑡9 + 𝑡13𝑡2𝑡7𝑡9 − 𝑡11𝑡4𝑡7𝑡9 −

𝑡12𝑡2𝑡8𝑡9 + 𝑡11𝑡3𝑡8𝑡9,  

𝛥𝐴2=𝑡13𝑡3𝑡5𝑡9 − 𝑡12𝑡4𝑡5𝑡9 − 𝑡1𝑡13𝑡7𝑡9 + 𝑡10𝑡4𝑡7𝑡9 + 𝑡1𝑡12𝑡8𝑡9 −

𝑡10𝑡3𝑡8𝑡9,  

𝛥𝐴3 = −𝑡13𝑡2𝑡5𝑡9 + 𝑡11𝑡4𝑡5𝑡9 + 𝑡1𝑡13𝑡6𝑡9 − 𝑡10𝑡4𝑡6𝑡9 −

𝑡1𝑡11𝑡8𝑡9 + 𝑡10𝑡2𝑡8𝑡9,  

𝛥𝐴4 = 𝑡12𝑡2𝑡5𝑡9 − 𝑡11𝑡3𝑡5𝑡9 − 𝑡1𝑡12𝑡6𝑡9 + 𝑡10𝑡3𝑡6𝑡9 +

𝑡1𝑡11𝑡7𝑡9 − 𝑡10𝑡2𝑡7𝑡9. 

 

Using Eqs. (27) and (37), one may calculate the dimensionless 

temperature T, carrier density N, displacements u and v, and 

stress components 𝜎𝑥𝑥 , 𝜎𝑦𝑦, 𝜎𝑥𝑦 .  
 

𝑢(𝑥, 𝑦, 𝑡) = [𝐴1𝜒11𝑒
−𝜆1𝑥 + 𝐴2𝜒12𝑒

−𝜆2𝑥 + 𝐴3𝜒13𝑒
−𝜆3𝑥 +

𝐴4𝜒14𝑒
−𝜆4𝑥]𝑒(𝜔𝑡+𝑖𝑏𝑦),  

𝑣(𝑥, 𝑦, 𝑡) = [𝐴1𝜒21𝑒
−𝜆1𝑥 + 𝐴2𝜒22𝑒

−𝜆2𝑥 + 𝐴3𝜒23𝑒
−𝜆3𝑥 +

𝐴4𝜒24𝑒
−𝜆4𝑥]𝑒(𝜔𝑡+𝑖𝑏𝑦),  

𝑇(𝑥, 𝑦, 𝑡) = [𝐴1𝜒31𝑒
−𝜆1𝑥 + 𝐴2𝜒32𝑒

−𝜆2𝑥 + 𝐴3𝜒33𝑒
−𝜆3𝑥 +

𝐴4𝜒34𝑒
−𝜆4𝑥]𝑒(𝜔𝑡+𝑖𝑏𝑦),                                                             (41) 

𝑁(𝑥, 𝑦, 𝑡) = [𝐴1𝜒41𝑒
−𝜆1𝑥 + 𝐴2𝜒42𝑒

−𝜆2𝑥 + 𝐴3𝜒43𝑒
−𝜆3𝑥 +

𝐴4𝜒44𝑒
−𝜆4𝑥]𝑒(𝜔𝑡+𝑖𝑏𝑦), 

𝜎𝑥𝑥(𝑥, 𝑦, 𝑡) = [−𝑎41(𝐴1𝜆1𝜒11𝑒
−𝜆1𝑥 + 𝐴2𝜆2𝜒12𝑒

−𝜆2𝑥 +

𝐴3𝜆3𝜒13𝑒
−𝜆3𝑥 + 𝐴4𝜆4𝜒14𝑒

−𝜆4𝑥) + 𝑖𝑏𝑎42(𝐴1𝜒21𝑒
−𝜆1𝑥 +

 𝐴2𝜒22𝑒
−𝜆2𝑥 + 𝐴3𝜒23𝑒

−𝜆3𝑥 + 𝐴4𝜒24𝑒
−𝜆4𝑥) − 𝑎41(𝐴1𝜒31𝑒

−𝜆1𝑥 +

𝐴2𝜒32𝑒
−𝜆2𝑥 + 𝐴3𝜒33𝑒

−𝜆3𝑥 +     𝐴4𝜒34𝑒
−𝜆4𝑥) − 𝑎41(𝐴1𝜒41𝑒

−𝜆1𝑥 +

𝐴2𝜒42𝑒
−𝜆2𝑥 + 𝐴3𝜒43𝑒

−𝜆3𝑥 + 𝐴4𝜒44𝑒
−𝜆4𝑥)]𝑒(𝜔𝑡+𝑖𝑏𝑦),   

𝜎𝑦𝑦(𝑥, 𝑦, 𝑡) = [−𝑎41(𝐴1𝜆1𝜒21𝑒
−𝜆1𝑥 + 𝐴2𝜆2𝜒22𝑒

−𝜆2𝑥 +

𝐴3𝜆3𝜒23𝑒
−𝜆3𝑥 + 𝐴4𝜆4𝜒24𝑒

−𝜆4𝑥) + 𝑖𝑏𝑎42(𝐴1𝜒11𝑒
−𝜆1𝑥 +

  𝐴2𝜒12𝑒
−𝜆2𝑥 + 𝐴3𝜒13𝑒

−𝜆3𝑥 + 𝐴4𝜒14𝑒
−𝜆4𝑥) − 𝑎41(𝐴1𝜒31𝑒

−𝜆1𝑥 +
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𝐴2𝜒32𝑒
−𝜆2𝑥 + 𝐴3𝜒33𝑒

−𝜆3𝑥 +   𝐴4𝜒34𝑒
−𝜆4𝑥) − 𝑎41(𝐴1𝜒41𝑒

−𝜆1𝑥 +

𝐴2𝜒42𝑒
−𝜆2𝑥 + 𝐴3𝜒43𝑒

−𝜆3𝑥 + 𝐴4𝜒44𝑒
−𝜆4𝑥)]𝑒(𝜔𝑡+𝑖𝑏𝑦), 

𝜎𝑥𝑦(𝑥, 𝑦, 𝑡) = [𝑖𝑏(𝐴1𝜒11𝑒
−𝜆1𝑥 + 𝐴2𝜒12𝑒

−𝜆2𝑥 + 𝐴3𝜒13𝑒
−𝜆3𝑥 +

𝐴4𝜒14𝑒
−𝜆4𝑥) − (𝐴1𝜆1𝜒21𝑒

−𝜆1𝑥 + 𝐴2𝜆2𝜒22𝑒
−𝜆2𝑥 +   𝐴3𝜆3𝜒23𝑒

−𝜆3𝑥 +

𝐴4𝜆4𝜒24𝑒
−𝜆4𝑥)]𝑒(𝜔𝑡+𝑖𝑏𝑦).  

5. Results and Discussion: 

In the frame of this model, we will introduce some numerical 

data in an effort to demonstrate the analytical technique that was 

previously described. The results indicate changes in the 

distribution of temperature, carrier density, stress, and 

displacement components using MATLAB programming 

software. The silicon (Si) element (example of semiconductor 

material) is used for this problem's numerical simulation [24-

27]. 

ρ = 2330 kg/𝑚3, λ = 3.64 ×1010N/𝑚2, µ = 5.46 ×1010N/𝑚2 ,  

𝑇° = 300 K ,  K =150  W 𝑚−1𝑘−1, 𝑐𝑒 = 695 𝑚2/K,  

𝐸𝑔 = 1.11eV, 𝐷𝑒 = 2.5𝑥10
−3𝑚2𝑠−1, 𝛼𝑡 = 4.14 × 10

−6𝑘−1, 

𝑐 = 2𝑚𝑠−1, 𝑡 = 0.1𝑠, 𝑑𝑛 = 9𝑥10
−31, 𝜏 = 5𝑥10−5s.    

Figures 2–5 provide numerical and graphical computations of 

the temperature, carrier density, thermal stress, and 

displacement components with respect to distance. 

5.1. The effect of rotation parameter 𝜴. 

Fig.2 illustrates how the temperature 𝑇, carrier density 𝑁, 

thermal stress 𝜎𝑥𝑥, 𝜎𝑥𝑦,  and displacement 𝑢, change in relation 

to axial 𝑥 over a range of rotation Ω values. It is observed that 

as the axial 𝑥 at Ω = 0,0.1,0.2,0.3 increases, all the quantities 

𝑇,𝑁, 𝜎𝑥𝑥 , 𝑢 𝑎𝑛𝑑 𝜎𝑥𝑦  decrease. When we take the special case of 

rotation i.e. (Ω = 0), we can reach to ramp-type heating in a 

semiconductor medium under photothermal theory [21].   

5.2. The effect of angular frequency parameter 𝝎. 

The influence of angular frequency parameter on the wave 

propagation of some fundamental physical field quantity 

distributions such as temperature 𝑇, carrier density 𝑁, thermal 

stress 𝜎𝑥𝑥 , 𝜎𝑥𝑦, and displacement 𝑢 with the horizontal distance 

𝑥 is shown in the third category (Fig. 3). They have the same 

decreasing behavior for all values of the angular frequency 

parameter 𝜔.  

5.3. The effect of time parameter 𝒕. 

Figure 4 represents the representation of some physical 
quantities under investigation against the horizontal distance x. 

The category is carried out under the effect of time 𝑡 , the 

magnitude of the physical components 

𝑇,𝑁, 𝜎𝑥𝑥 , 𝑢 𝑎𝑛𝑑 𝜎𝑥𝑦  increases by increasing the value of time.  

5.4. The effect of ramp-type heating parameter 𝒕𝝄. 

The impact of the ramp-type heating parameter 𝑡𝜊 is plotted 

due to the main components 𝑇,𝑁, 𝜎𝑥𝑥 , 𝑢 𝑎𝑛𝑑 𝜎𝑥𝑦  with the 

distance 𝑥  as seen in Figure 5. All physical distributions 

𝑇,𝑁, 𝜎𝑥𝑥 , 𝑢 𝑎𝑛𝑑 𝜎𝑥𝑦  have the same variance. Their values rise 

dramatically as horizontal distance increases. 
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Fig.2. The variations of the main physical quantities 

𝑇,𝑁, 𝜎𝑥𝑥, 𝑢 𝑎𝑛𝑑 𝜎𝑥𝑦 against 𝑥 −axis under the effect of rotation. 

 

 

  

 

 

   

Fig.3. The variations of the main physical quantities 

𝑇,𝑁, 𝜎𝑥𝑥, 𝑢 𝑎𝑛𝑑 𝜎𝑥𝑦 against 𝑥 −axis under the effect of angular 

frequency.  
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Fig.4. The variations of the main physical quantities 

𝑇,𝑁, 𝜎𝑥𝑥, 𝑢 𝑎𝑛𝑑 𝜎𝑥𝑦 against 𝑥 −axis under the effect of time.  

 

 

    

 

   

     

Fig.5. The variations of the main physical quantities  

𝑇,𝑁, 𝜎𝑥𝑥, 𝑢 𝑎𝑛𝑑 𝜎𝑥𝑦 against 𝑥 −axis under the effect of ramp-type 

heating parameter.     
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6. Conclusion 

This study presents a novel model that characterizes the photo-

thermoelastic processes under the effect of rotation in a 

semiconductor material with ramp-type heating. The main 

governing equations in 2D electronic-elastic deformation are 

presented. The system was solved using the eigenvalue 

technique and normal mode analysis. Numerical calculations of 

the basic physical quantities were performed and graphed. This 

investigation leads us to the conclusion that the wave 

distributions of the primary physical field parameters are 

significantly influenced by the rotation. In the absence of 

rotation, we notice that the curve has a large value with 

increasing amplitude compared to the rest of the curves in its 

presence. The magnitude values of physical field quantities 

distributions are affected clearly in the presence of rotation, 

angular frequency, time, and ramp-type heating parameter. In 

addition, any minor changes in these parameters tend to cause 

changes in the propagations of waves with continuous 

distribution behavior. As expected, it can be found that the 

principal quantities satisfied the boundary conditions. The 

examined problem has several significant uses. Modern 

technology and plasma physics (such as integrated circuits, solar 

cells, and the electronic industry) make use of rotator elastic 

semiconductor materials in the context of photo-thermoelastic 

processes during ramp-type heating.   
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Nomenclature 

𝜌             the material density 

𝑡             the time 

𝑇°            absolute temperature 

𝑢, 𝑣         the displacement components 

𝑐𝑒            the specific heating at constant strain 

N             the carrier density  

𝜆, 𝜇          the Lame’s constants 

𝐷𝑒             the coefficient of carrier diffusions 

𝛼𝑇            the coefficient of the linear thermal expansion  

𝜏               the photogenerated carrier lifetime   

𝑑𝑛             the coefficient of electronic deformation 

𝐸𝑔             the energy gap  

𝛿𝑛             the difference of deformation potential of conduction 

and valence band   

k                the thermal conductivity of the sample 

𝜎𝑖𝑗             the stress components  

Appendix I 

𝑚1 =  𝑎22 − 𝜂1 − 𝜂12 − 𝜂11 𝜂4 − 𝜂6 − 𝜂3 𝜂8, 
𝑚2 = −𝜂3 𝜂5  − 𝜂2 𝜂8, 

𝑚3 = −𝑎22𝜂1 − 𝛽𝜂10 − 𝑎22𝜂12 + 𝜂1𝜂12 − 𝑎22𝜂11𝜂4 −
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           𝛽𝜂11𝜂4 − 𝜂2𝜂5 − 𝑎22𝜂6 + 𝜂1𝜂6 + 𝜂12𝜂6 + 𝜂11𝜂4𝜂6 −

           𝜂11𝜂3𝜂7 − 𝑎22𝜂3𝜂8 + 𝜂12𝜂3𝜂8 − 𝜂7𝜂9 − 𝜂4𝜂8𝜂9, 

𝑚4 = −𝑎22𝜂3 𝜂5 + 𝜂12𝜂3 𝜂5 − 𝜂11𝜂2𝜂7 − 𝑎22𝜂2𝜂8 +

          𝜂12𝜂2𝜂8 − 𝜂4 𝜂5𝜂9,   

𝑚5 = 𝛽𝜂1𝜂10 + 𝑎22𝜂1𝜂12 − 𝑎22𝜂2 𝜂5 + 𝜂12𝜂2 𝜂5 + 𝑎22𝜂1𝜂6 +

           𝛽𝜂10𝜂6 + 𝑎22𝜂12𝜂6 − 𝜂1𝜂12𝜂6 +  𝑎22𝜂11𝜂4𝜂6 +

           𝛽𝜂11𝜂4𝜂6 − 𝑎22𝜂11𝜂3𝜂7 − 𝛽𝜂11𝜂3𝜂7 + 𝛽η10𝜂3𝜂8 +

          𝑎22𝜂12𝜂3𝜂8 − 𝑎22𝜂7𝜂9 − 𝛽𝜂7𝜂9 + 𝜂1𝜂7𝜂9 − 𝑎22𝜂4𝜂8𝜂9 −

 𝛽𝜂4𝜂8𝜂9,   

𝑚6 = 𝛽𝜂10𝜂3 𝜂5 + 𝑎22𝜂12𝜂3 𝜂5 − 𝑎22𝜂11𝜂2𝜂7 − 𝛽𝜂11𝜂2𝜂7 +

          𝛽𝜂10𝜂2𝜂8 + 𝑎22𝜂12𝜂2𝜂8 − 𝑎22𝜂4 𝜂5𝜂9 − 𝛽𝜂4 𝜂5𝜂9,  

𝑚7 = 𝛽𝜂10𝜂2𝜂5 + 𝑎22𝜂12𝜂2𝜂5 − 𝛽𝜂1𝜂10𝜂6 − 𝑎22𝜂1𝜂12𝜂6 +

𝑎22𝜂1𝜂7𝜂9 + 𝛽𝜂1𝜂7𝜂9, 

Appendix II 

𝜒11 =
𝛽(𝜂6−𝜆1

2
)[𝛽𝜆1

2
𝜂7+(𝑎22+𝜆1

2
)𝜆2𝜂7+𝛽𝜂10(𝜂5−𝜆1

2
)+(𝜂12−𝜆1

2
)(𝜂5−𝜆1

2
)(𝑎22+𝜆1

2
)]

𝛽𝜆1(𝜂5−𝜆1
2)

−

𝜖 ,, 
𝜒12 =
𝛽(𝜂6−𝜆2

2)[𝛽𝜆2
2𝜂7+(𝑎22+𝜆2

2)𝜆2
2𝜂7+𝛽𝜂10(𝜂5−𝜆2

2)+(𝜂12−𝜆2
2)(𝜂5−𝜆2

2)(𝑎22+𝜆2
2)]

𝛽𝜆2(𝜂5−𝜆2
2)

−

𝜖,  
𝜒13 =
𝛽(𝜂6−𝜆3

2
)[𝛽𝜆3

2
𝜂7+(𝑎22+𝜆3

2
)𝜆3

2
𝜂7+𝛽𝜂10(𝜂5−𝜆3

2
)+(𝜂12−𝜆3

2
)(𝜂5−𝜆3

2
)(𝑎22+𝜆3

2
)]

𝛽𝜆3(𝜂5−𝜆3
2)

−

𝜖,  
𝜒14 =
𝛽(𝜂6−𝜆4

2)[𝛽𝜆4
2𝜂7+(𝑎22+𝜆4

2)𝜆4
2𝜂7+𝛽𝜂10(𝜂5−𝜆4

2)+(𝜂12−𝜆4
2)(𝜂5−𝜆4

2)(𝑎22+𝜆4
2)]

𝛽𝜆4(𝜂5−𝜆4
2)

−

𝜖,   

𝜒21 =
−[𝛽𝜆1

2𝜂7+(𝑎22+𝜆1
2)𝜆1

2𝜂7+𝛽𝜂10(𝜂5−𝜆1
2)]

𝜆1
,                           

 𝜒22 =
−[𝛽𝜆2

2𝜂7+(𝑎22+𝜆2
2)𝜆2

2𝜂7+𝛽𝜂10(𝜂5−𝜆2
2)]

𝜆2
 , 

𝜒23 =
−[𝛽𝜆3

2
𝜂7+(𝑎22+𝜆3

2
)𝜆3

2
𝜂7+𝛽𝜂10(𝜂5−𝜆3

2
)]

𝜆3
,                           

 𝜒24 =
−[𝛽𝜆4

2
𝜂7+(𝑎22+𝜆4

2
)𝜆4

2
𝜂7+𝛽𝜂10(𝜂5−𝜆4

2
)]

𝜆4
,    

𝜒31 =
𝛽𝜆1

2(𝜂6−𝜆1
2)+𝛽𝜂9(𝜂5−𝜆1

2)

𝜆1
,                                      

 𝜒32 =
𝛽𝜆2

2
(𝜂6−𝜆2

2
)+𝛽𝜂9(𝜂5−𝜆2

2
)

𝜆2
, 

𝜒33 =
𝛽𝜆3

2(𝜂6−𝜆3
2)+𝛽𝜂9(𝜂5−𝜆3

2)

𝜆3
,                                         

 𝜒34 =
𝛽𝜆4

2(𝜂6−𝜆4
2)+𝛽𝜂9(𝜂5−𝜆4

2)

𝜆4
, 

𝜒41 =
(𝑎22+𝜆1

2)[𝛽𝜆1
2(𝜂6−𝜆1

2)+𝛽𝜂9(𝜂5−𝜆1
2)]

𝛽𝜆1
,                            

 𝜒42 =
(𝑎22+𝜆2

2)[𝛽𝜆2
2(𝜂6−𝜆2

2)+𝛽𝜂9(𝜂5−𝜆2
2)]

𝛽𝜆2
,  

 𝜒43 =
(𝑎22+𝜆3

2)[𝛽𝜆3
2(𝜂6−𝜆3

2)+𝛽𝜂9(𝜂5−𝜆3
2)]

𝛽𝜆3 
 ,                                 

 𝜒44 =
(𝑎22+𝜆4

2)[𝛽𝜆4
2(𝜂6−𝜆4

2)+𝛽𝜂9(𝜂5−𝜆4
2)]

𝛽𝜆4
.  
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