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Abstract: This study offers a recent technique named the Sumudu Transform Pade' Approximation Method (STPAM) to treat
fractional physical models. It comprises the Pade' Approximation Method (PAM) and the Sumudu Transform Method (STM).The
Sumudu Transform Pade' Approximation Method (STPAM) enhances the accumulation rate of the truncated Maclaurin series by
stratifying the Pade' method in the Sumudu transform method chain solution. The Caputo’s fractional derivative was employed. It is
necessary for simulating issues with non-local features and phenomena that account for interactions in the past. The Caputo
fractional operator is more adaptable for analysis and can handle initial and boundary value issues. The principal objective of the
study is to use the Sumudu Transform Pade' Approximation Method (STPAM) to solve fractional models that arise in physics. We
solved fractional physical models using the Sumudu transform method (STM) and compared the results to the exact solutions and
the approximate Pade' approximation method (PAM) to assess the quality of the Sumudu Transform Pade' Approximation Method
(STPAM). The findings highlight STPAM's advantages, including its ease of use, effectiveness, universality, cleanliness,

packability, quality, and clarity.
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1. Introduction

Fractional differential equations (FDES) have
received a lot of interest in the domains of physics,
engineering, and other disciplines [1,2]. FDES must have
analytical sequence solutions for several physical
interactions in  non-homogeneous mediums  [3].
Numerous methods profile numerical and analytical
solutions with fractional-order derivatives for physical
phenomena stated as using differential equations,
including the Sumudu transform (ST) approach [4], the
domain decomposition Sumudu transform method
(ADSTM) [5], the variation iteration Sumudu transform
method (VISTM) [6], the homotopy Sumudu transform
method (HSTM) [7,8], the adomain decomposition
method (ADM) [9,10], the homotopy perturbation
method (HPM) [11], the Laplace transform method (LT)
[12-17], the homotopy analysis method (HAM) [18], the
Q-homotopy analysis transform method (Q-HATM) [19],
the natural transform method (NTM) [20-23], the
Laplace residual power series method (LRPSM) [24], and
the fractional exponential function (FEF) [25]. Here, we
reminisce about various concepts.
Definition 1 ([26, 27]):
The Riemann Lowville (R-L) fractional integral factor of
order ¢, of a function k(y, t),is defined via :

1 t
JE(ut) = r(s)f (t—D)* 'k(r,Ddr,e > 0, €1,
! 0
k(xt);e=0t<t<0,
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where T', is the gamma function and ¢, is an arbitrary real
number but fixed base point. For the R-L fractional
integral we have: [5¢t% = —A+D _ye+a, (2)

T(e+A+1)
Definition 2 ([26, 27]):

The Caputo fractional derivative (CFD) factor of order &,
of k(x, t), is defined via

m
ftm_g(%),m —l<e<mmEeN
DEK(X' t) = amK(X,t) .
—2 2 e=m
atm
3

Definition 3 ([28, 29]):

The Mittag-Leffler Function (MLF) E, (1) is defined via
the series representation, valid in the whole complex
plane as:

k
Ea(n) = Yicorramrn * € CR@>0n€C  (4)
Definition 4 ([30]):
Watugala eta al. studied and offered The Sumudu
transform (ST) as:
Gw) = S[k(®);u] = fy k(ut)e™tdt,u € (=t1,t;), (5)
Definition 5 ([31]):
the Sumudu Transform (ST) of the Caputo fractional
derivative is offered as:

m-1

S[DEV(E)] = uS[i(t)] — Z uetk 0 (0.4)
k=0

,(m—1<e<m), (6)
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Definition 6 ([31]):

The duality Sumudu-Laplace transforms is:

Let k(t) € A, with Laplace Transform (LT) K (s), then,
the Sumudu Transform (ST) of k(t) is given by:

1
G(u) =<1, ™)
Definition 6 ([32- 34]): PAM symbolizes a function via:
[M] _agta ttta,t?t...taytMe ®)
T 1+bytE+byT2E 4.t bgTE

adequates the vigor chains of k(t), out of the orders 1 ,
X X% xMZ. PAM offers a power gauge with force
chains to execute computational jobs[35]. The main goal
of this paper is to solve fractional physical models via the
STPAM. The STPAM gains exact and approximate
numerical solutions analytically. This is the main
advantage of STPAM. The exact solution received via
STM and the approximate numerical solution achieved
via PAM The outputs show the advantages of STPAM,
including its ease of use, effectiveness, universality,
cleanliness, packability, quality, and clarity.The
remaining portions of the document had organized as
follows: Section 2 introduces the STPAM designers.
Section 3 contains the fractional physical models. Section
4 of the paper presents the discssion. Section 5 includes
the study's conclusion.
2. The methodology of STPAM
Here, we display the proceedings of STPAM as follows:
Let the following fractional nonlinear equation:
Dfk+Rrk+L k =X(y,t),n—1<e<n,
€N, n€eN, 9
where R,L x, are linear and nonlinear functions,
consequently, X(y,t), is an radix function,
and ky(x, 7) = k(x, 0), is the initial condition (IC).
Step 1:
If we stratify STM on (9), and utilize I1C, we profit:
u=eS[k(x, t)] —u"%k(x, 0)

+S[Re+L k] = S[R(, v)], (10)

By simplifying, we profit
S[k(x, t)] = k(x,0) — u*S[Rr+L K]
+utS[R(x, )], (12)

Employing ADM [9,10], we can mark a nonlinear
functionL k(x,t) = Xr—o D, Where

ar ©
@, = 1' L Zro 4 K limo, T = 0,12, (12)

Stratify the inverse ST on (11), we proflt
K(X' 0) = KO(X! t)! q 2 0 Kq+10(' t)

= ST —ufS[Rr+L k] + usS[R(x, O], , (13)
The fractional solution takes the form:
K(x,t) = Ko + k1 + Ky + K3 + Kg+. .., (14)
ie.,
tE t2€
k(x,t) =k

+ +
CTATE+ D T 2T 2e+ 1)
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3e t4£
& [(3e+1) Tt [(4e+1) + (15)
Eqg. (15) displays the fractional sequence solutions to (9)
profited via STM. Lastly, STM supplies a closed-form
solution, making it simple, attractive, and superior to
competing approaches.
Step 2:
With great precision, we create a fractional numerical
PAM solution to (9). Employing the oblique fractional
Pade' approximation, manipulate:
M ao+a té+ast?e+...+apytME
[_] - ;+blltE+b2212£+.......+b:r77E ! (16)

where M =177,

Thus,

ot ay tMe
by tTE

+.. 17)

[M] a0+a1t8+a2t2£+"'
nl— 1+b1t€+b2t28+

TZE

t F(s+1) te [(2e+1)
By cross-multiplication in (17), we find
ag + a t& + ayt?e+.... +a, tMe

)ts + ((CZ +

t2e+... (18)

1
=co+ (coby + 1 ——=
0 ( oY1 1F( + 1)
1
ba¢o) tGerp T b1ty
In the case of powers of t, we get:
Agent Of to:ao = Co,
1
Agent of t&: a, = (CObl + (o5} m) geeey (19)

Notice that grade of tMe+1 eMe+2 | ¢2Me have to be
equalized to zero. Such straighten the stables in (16) via
the Mathematica software.

3. Physical Models

Here, we investigate the solutions of the fractional
physical model to clarify the advantages of the STPAM.
3.1 Model 1:

This model teaches the physical problem of wave
propagation. The wave equation describes the vibrations
of a string, the propagation of electromagnetic and sound
waves, or the transmission of electric signals in a cable.
The lessons of the wave equation are necessary in diverse
areas of science and engineering. Consider the following
wave equation [35]:

E—KXX()(t)O<)(<nt>O (20)
We can write the fractional from of (20) as :

Zts Ky, 1<e<20<y<mt>0, (21)
with initial conditions

k(x,0) =siny,x:(0,t) =0, (22)

At e — 2, we rest to the exact solution which is the same
solution of (20) obtained by [35]:

Kk(x,t) = sin y cost, (23)
Stratifying ST on (21), we profit:
u S[k(x, )] —u%k(x,0)

—u" 1, (0,8) = S[iyy] (24)
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On spreading, we profit

S[C O] = siny + uS[k,, ], (25)
Stratify the invers STof (25), we profit:
Kk(x,t) = sin y + ST Hu®S[k 11, (26)
Employing the decomposition series :
k(X t) = Xg=o0kq (X, t), we profit
Ya=okq O t) = siny + STHuS[Eg-0 kgux 06 O], (27)
Employing ADM [9,10] and profit:
k(x,0) =siny, kq4q = s [u®S[Kqyxll, (28)
i.e,
t£ tZS
K{ = —msm)(,}cz = mSlﬂ){,
t3€ i . 4& .
K3 = T T@ern) S A Ka = rogy STM A
t5€ ) t6£ i
K5 = T T(sern) A K6 = Tigesn) SUEA (29)
Then, the fractional solution of (21) is
K(x,t) = Ko + K1 + Ky +K3+.... (30)
Thus,
. & tZS
k(r,t) = siny[1- [(e+1) t T(2e+1)
t3£ t4-£ t5£
T T(3e+l) + [(4e+1) TI(5e+1) +..1 (31)
At £ - 2, (31) becomes
, t2  t* 6 8
K(X't)=5lnX[1_§+Z_a a—...]. (32)
ie. k(x t) = sian?{;O(‘;—rg;tz” (33)
Then, k(x,T) = sin y cos't, (34)

this is the exact solution of (21) which is the similar
solution of (20) profited via [35]. The approximate
solution of (21) for various values of & can profit using

PM E] as follows:
[3] ag + a t + a,t?€ + ast3¢
3] 14 byte + byt2e + byt3e

&

tzs t3€
= Si =21 - + _
siny @ [ I'e+1) T'Qe+1) T'Be+1)
t4€ t5€ £6€
traery teern Treen ) (35)

Cross multiplying yields and equating powers of t leads
to:

Agent of t°¢:

[ ———b b
S Ge D U TEer D T2 T@e v D
—by————) =0,

rQBe + 1))
Agent of t5¢:
oy (—— 4 1 1
sinx ( [(5e+1) = 1T(4e+1)  2T(3e+1)
by————) =0
* TQ2e + 1)) ’
Agent of t*¢:
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; —b b
S Gae D U TGer ) T 2T+ D
ey T
Agent of t3¢:
1

iny (- b —b b

S Craern T Tze vy T ) T2
= asg,
Agent of t2¢:
1

; —b by) = ay,

S Gzevn " IrErn TR =@

E. 7 _ —
Agent of t%: sin y ( TGerD) + by F(e+1)) =aqa,,

Agent of t%: a, = siny,
this system of equations gives the same fractional
from of by, by, bs,a9,a4,a,, a3 using Mathematica
software. At ¢ = 2, the previous system gives:
by = 0.0294042,b, = 0.000423729, b3

= 3.23555x107,
ay =siny,a; = —0.485298siny, a,

= 0.0273883sin y,
az = —0.000372342 sin y
Then,
3] _
3lpam
. 1-0.485298t%+0.0273883t*—0.000372342t°
siny (36)

1+0.0294042t2+0.000423729t%+0.00000323554¢t°

Table 1: Absolute errors of k(x,t), via PAM versus the
standard solution at € - 2, x = 90.

t Exact solution PAM errorPAM
0.2 0.876176 0.875651 | 0.000525
0.4 0.823425 0.821332 | 0.002093
0.6 0.737847 0.733165 | 0.004682
0.8 0.622853 0.614598 | 0.008255
1.0 0.483028 0.470265 | 0.012763

Table 2: Absolute errors of k(y,t), via STM versus the
standard solution at € —» 2, x = 90.

t Exact solution STM ErrorSTM
0.2 0.876176 0.876176 | 0.00000
0.4 0.823425 0.823425 | 0.00000
0.6 0.737847 0.737847 | 0.00000
0.8 0.622853 0.622853 | 0.00000
1.0 0.483028 0.483028 | 0.00000

sjsci.journals.ekb.eg

Consider the following heat conduction [35]:
dx
T Kyy OOV 2,8) + Ky (0 Y, 2,8) + K2, (X, Y, 2, 1),
0<yyz<mt>0. (37)

Here, we write the fractional heat equation as follows:

dfx

W = K)()((X' vzt + Kyy(X' y,7,t)

+KZZ()(’ y! Z! t);

0<e<10<yyz<mt>0, (38)
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(b)

—  Epap=l

1.0F
span=1
0.9
exact solution
S 0.8}
ES [
< 0.7f
0.6 \

(c)
Figure 1: The plot of k(y, t), at different values of e(a) PAM,
(b) STM, and (c) the exact solution of (21) ate — 2, which is
the same solution of (20) gained via [35].

with initial conditions:
k(x,y,2,0) =2sinysinysinz (39

At € —» 1, we rest to the exact solution x(y,y,zt) =

©2024 Sohag University
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2e 3t sinysinysinz, of (37) which is the same
solution of (36) obtained via [35]. Applying the ST on
(37), we profit
u= Sk y, 2, )] —u™k(x, ¥, 2,0)
= Skyy + Kyy + Kzz], (40)
On simplifying, we profit
Slk(x,y,z,t)] =2sinysinysinz

FusS[kyy + Kyy + Kzl (41)
Taking the invers ST of (40), we profit
K(x,y,z,t) =2sinysinysinz
+STHulS iy, + Kyy + K22, (42)
Employing the decomposition series
k(x,v,2,t) = ZZ":O kq (XY, 2,t), we profit

Z kg (X, y,2,t) = 2sinysinysinz
q=0

o0

+5-1[u85[z Koy G0 Y 21)
q=0
+ Z?qozo quy (Xr Y,z t) + ZZIO:O quz (X' Y,z t)]],
(43)
Employing ADM [9,10] , we profit:
k(x,vy,z,0) =2sinysinysinz,
Kg+1 = STHuES[Kgyy + Kqyy + Kqzz]]- (44)
ie,
3t
 I(e+1)
(3t)2£
T T'(RQe+1)
B (3t)3£
 T'Be+1)
_ @By* 3 sin v sinv si
Ky = F4e 1 1) sinysinysinz,
(3t)5£
e +1)
_ (3t)6€
K6 = Tee+1)
Then, the fractional solution of (38) is
KX, y,z,t) = kg + K1 + Ky + K3+, ... (46)
Thus,
k(x,v,2,t) =2sinysinysinz
3t€ (3t)2¢ (3t)3¢ (3t)*¢

x [1— + - + Lk
I'(e+1) TI'(2e+1) TI'(Be+1l) T'(4e+1) TI'(5e+1)
(3t)6£

reetn) l (47)
At e — 1, (47) becomes
k(x,y,z,t) =2sinysinysinz

3t . (32 (3 3pt
-T+5 b (48)

Then,
k(x, v,z t) =2e 3 sin ysinysinz (49)
The numerical approximate solution of (38) for various

values of € can obtain using PAM E] as follows:

2sinysinysinz,

2sinysinysinz,

2sinysinysinz,

Kg = 2sinysinysinz,

2sinysinysinz, (45)
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[3] _ag + aqtf + apt?® + azt®
3] 7 14 byte + byt2e + byt3e

T
=2sinysinysinz & | T+ 1)
(3t)2£ (3038 (3048

Fe+1) I'(Be+1) TI'(4e+1)
_ (3t)5£ (3t)6£ _
[(5e+1) T(6e+1) -1 (50)
cross multiplying yields and equating powers of t leads
to:

Agent of ¢
. . . 36 35
2sinysinysinz ([‘(6g+1) — by I(5e+1)
34 3y _
+b, C(4e+1) 3 F(38+1)) =0
Agent of ¢
5 34
2 N . 7 —
siny siny sinz( I['(5¢+ 1) * by I'(4e +1)
3 32
—b b =0,
2T@er D T BT zer 1)
Agent of t*¢:
34 3°
2sinysinysinz( — b
T(4e+1) 'TBe+1)
+b > by = 0
TRe+1) °T(e+ 1)) o
Agent of t3¢:
33 3%
2 i . ; — b
siny siny sinz ( T@e+ 1) '‘T@e+1)
et =
Agent of t#:
3
25in)(siny5inz(—m+ b)) = a,,

Agent of ¢°:
ag = 2sinysinysinz,
This system gives the same fractional from of
by, by, b3, ay,a4,a,,as, using Mathematica software. At
€ = 1, we obtain:
b; = 1.5,b, = 0.9,b; = 0.225,
ay = 2sinxsinysinz,a,
= (—1.78747)2sinx siny sinz,
a, = (1.07248)2sinxsinysiny,
a; = (—0.26812)2sinx siny sin z,
Then,

.0,

. . , 1-1.78747t+1.07248t%—-0.26812t3
=2sinysinysinz

1+1.5t+0.9t24+0.225¢t3

(51)

KNTM

#PAM

L.2f,
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(b)

— el

1.2¢
1_[}5 —  spay=ll
—_ I}S" —_ Exact solution
= 0.6}
E.
0.4}
0.2}
0.0 0.2 0.4 0.6 0.8 1.0
L
(©)
Figure 2: Plot of k(y,y, z, t), at different values of £ using (a)

STM, (b) PAM, and (c) the exact solution of (38) at € - 1,

which is

©2024 Sohag University sjsci.journals.ekb.eg

the same solution gained via [35].
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Table 3: Absolute errors of k(y, y, z, t), via PAM versus the
standard solutionate - 1, x,y,z = 90.

t Exact solution PAM errorPAM
0.2 1.16998 0.729717 | 0.440263
0.4 0.957899 0.356742 | 0.601157
0.6 0.784262 0.160326 | 0.623936
0.8 0.642099 0.058572 | 0.583527
1.0 0.525706 0.006604 | 0.519103

Table 4: Absolute errors of k(x,y,z, t), via STM versus the
standard solutionate - 1, y,y,z = 90.

t Exact solution STM ErrorSTM
0.2 1.16998 1.16998 | 0.00000
0.4 0.957899 0.957899 | 0.00000
0.6 0.784262 0.784262 | 0.00000
0.8 0.642099 0.642099 | 0.00000
1.0 0.525706 0.525706 | 0.00000

4. Discussion and conculsion:

To obtain adequate new rational solutions for the
fractional physical models based on a combination of the
ST and PAM approaches, this work proposes a novel
technique dubbed STPAM. The computations had
performed using the Mathematica software. Figures (1,2)
and tables(1-4) show that the ST solution contrasts with
an exact solution and a fractional solution created using
Pade' approximation method (PAM).The current
solutions are general solutions of the proposed models
concerning standard cases produced by [35].0n the other
side. The STPAM differs from existing methods in that it
is easy for manufacturers to use, doesn't demand arduous
work, and provides superior alternatives. The treatment
of fractional physical models using STPAM is a
theoretical examination of models. It combined STM and
PAM techniques. The STM is a method of analysis. The
PAM can broaden the ingathering of the Taylor chains
that had their ends severed and improve the rough
ingathering average of the Maclaurin series. The
computations were handled by Mathematica software.
The results reveal the effectiveness and high quality of
the current technique. Without employing linearization,
perturbation, or constraining assumptions, the proposal
technique presents the solutions as convergent series with
readily calculable components. Consequently, the
STPAM is effective and powerful in locating
approximate, analytical-numerical solutions.
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