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Abstract:

In this paper, we use the notion of upper set R(A) to define the local function and closure operator cl∗R(A) in an ideal approximation
space (X ,R,L ). This, ideal approximation space (X ,R,L ) based on an ideal L joined to the approximation space (X ,R)
are introduces as well. The approximation axioms Ti, i = 0,1,2 are introduced in the approximation space and also in the
ideal approximation spaces. Examples are given to explain the definitions . Connectedness in approximation spaces and ideal
connectedness are introduced and the differences between them are explained.
keywords: Ideal approximation space; local function; separation axioms; connectedness.
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The concept of rough sets was originated by Pawlak
in 1982 [1] based on there are some objects in a vague
area called the boundary region that can not be
determined by a set or its complement. Rough sets
depends on a relation R defined on the universal finite set
X , and the pair (X ,R) is called an approximation space.
Firstly, rough sets was given by some equivalence
relation. Many authors studied rough sets based on more
generalized relations on X , for example see [2–5]. There
are lower set, upper set and consequently a boundary
region that became an essential role in artificial
intelligence, granular computing and decision analysis.
The generated topology τ on an approximation space
(X ,R) that represent the topological properties of rough
sets were studied by many authors (ex. [2, 6–10]). Many
kinds of generalizations of Pawlak’s rough set were
obtained by replacing the equivalence relation with an
arbitrary binary relation. On the other hand, many
researchers have studied the relationships between rough
sets and topological spaces and have used topological
structures like infra-topology and supra-topology to deal
with rough set notions and address some real-life
problems (ex. [8, 11–13]). It was proved that the lower
and upper approximation operators derived by a reflexive
and transitive relation were exactly the interior and
closure operators in a topology. Many research works
were introduced fore the ordinary case with rough sets
with some medical applications as in[14–16].

Based on the paper in [17], if we combined the definitions
given in [18] and the definitions given in [4] that used an
ideal on X , then we get a more general form of roughness
and a better accuracy value of the rough set. Thus,
assigning an ideal in defining the lower and upper sets in
some approximation space is a generalization of
roughness.
In this paper, we introduce the interior and closure in
ideal approximation spaces, generating two ideal
approximation topological spaces based on minimal
neighborhoods. The local functions of some subset (A) of
a universe (X) with respect to a given ideal play a basic
role in defining the related interior and closure operators.
Separation axioms with respect to these ideal
approximation spaces are reformulated and compared
with examples to show their implications. We reformulate
and study connectedness in these ideal approximation
spaces and compare them with examples to show the
implications between them. Ideal approximation and
continuity are introduced. Moreover, we modified our
definitions to get similar types of ideal approximation
spaces but based on maximal neighborhoods. In addition,
we explained the relationship between some of the
topological properties of the two types with some
examples.
In the course of the paper, let X be a finite set of objects
as a universal set. A relation R from a universe X to a
universe X (a relation on X) is a subset of X × X . The
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formula (x,y) ∈ R is abbreviated as xRy and means that x
is in relation R with y. Also, the right neighborhoods of
x ∈ X is xR = {y : xRy} and the left neighborhoods of
x ∈ X is Rx = {y : yRx}. A set < x > R (resp. R < x >) is
the intersection of all right (resp. left) neighborhoods
containing x. Also, R < x > R = R < x > ∩ < x > R. For
A ⊆ X , the lower (LR(A)), the upper (UR(A)) and the
boundary region BR(A) ate approximation sets defined as
follows (see [3, 19])

LR(A) = {x ∈ A :< x > R ⊆ A},
UR(A) = A∪{x ∈ X :< x > R∩A ̸= φ},
BR(A) =UR(A)−LR(A).

LR(A),UR(A) and BR(A) are the called lower, upper and
boundary region approximation sets associated with the set
A ⊆ X and based on < x > R in an approximation space
(X ,R).

Lemma 01[20] The upper approximation UR(A) has the
following properties:

(1)UR(φ) = φ ,
(2)LR(A)⊆ A ⊆UR(A), for A ⊆ X ,
(3)UR(A∪B) =UR(A)∪UR(B), ∀A,B ⊆ X ,
(4)UR(UR(A)) =UR(A), ∀A ⊆ X ,
(5)UR(A) = (LR(Ac))c, ∀A ⊆ X, where Ac denotes the

complement of A.

Also, the operator UR(A) on P(X) induced a topology on
X denoted by τ∼ and defined by τ∼ = {A ⊆ X : UR(Ac) =
Ac}.

Definition 01[21] Let X be a non-empty set. Then L ⊆
P(X) is called an ideal on X if it satisfies the following
conditions:

(1)φ ∈ L ,
(2)If A ∈ L and B ⊆ A, then B ∈ L ,
(3)If A,B ∈ L , then A∪B ∈ L .

Definition 02[4] Let R be a binary relation on X and L
be an ideal defined on X and A ⊆ X. Then, the lower and
upper approximations, R(A) and R(A) of A are defined by:

R(A) = {x ∈ A :< x > R∩Ac ∈ L },
R(A) = A∪{x ∈ X :< x > R∩A /∈ L }.

Lemma 02[4] The upper approximation R(A) has the
following properties:

(1)R(A) = (R(Ac))c,
(2)R(φ) = φ ,
(3)R(A)⊆ A ⊆ R(A),
(4)If A ⊆ B, then R(A)⊆ R(B),
(5)R(A∩B)⊆ R(A)∩R(B),
(6)R(A∪B) = R(A)∪R(B),
(7)R(R(A)) = R(A).

Definition 03[17] Let R be a binary relation on X and L
be an ideal on X and A ⊆ X. Then, the lower and upper
approximations, R(A) and R(A) of A are defined by:

R(A) = {x ∈ A : R < x > R∩Ac ∈ L },

R(A) = A∪{x ∈ X : R < x > R∩A /∈ L }.

Theorem 01[17] The upper approximation R(A) has the
following properties: for A,B ⊆ X,

(1)R(A) = (R(Ac))c,

(2)R(φ) = φ ,

(3)LR(A)⊆ R(A)⊆ R(A)⊆ A ⊆ R(A)⊆ R(A)⊆UR(A),

(4)If A ⊆ B, then R(A)⊆ R(B),
(5)R(A∩B)⊆ R(A)∩R(B),
(6)R(A∪B) = R(A)∪R(B),
(7)R(R(A)) = R(A).

1 Ideal approximation spaces

Definition 11Let (X ,R,L ) be any ideal approximation
space and A ⊆ X. Then,

(1)The ∗−local closed set A∗ of A is defined by:

A∗ =
⋂
{G ⊆ X : A−G ∈ L ,R(G) = G}.

(2)The ∗∗−local closed set A∗∗ of A is defined by:

A∗∗ =
⋂
{G ⊆ X : A−G ∈ L ,R(G) = G}.

Corollary 11Let (X ,R,L0) be any ideal approximation
space, where L0 is the trivial ideal on X. Then, for each
A ⊆ X we have A∗ = R(A) and A∗∗ = R(A).

Proof.Since L0 = {φ}, we get that
A∗ =

⋂
{G ⊆ X : A − G = φ ,R(G) = G}, that is,

A∗ =
⋂
{G ⊆ X : A ⊆ G,R(G) = G}. Since

A ⊆ R(A),R(R(A)) = R(A), then A∗ ⊆ R(A). Suppose that
R(A) ⊈ A∗, then there exists G ⊆ X ,A ⊆ G,R(G) = G so
that R(A) ⊈ G = A∗. But A ⊆ G implies that
R(A) ⊆ R(G) = G. Contradiction, and then, A∗ = R(A).
Similarly, A∗∗ = R(A).

Proposition 11Let (X ,R,L ) be any ideal approximation
space,L1 and L2 be two ideals on X , and let A and B be
subsets of X. Then the following properties hold:

(1)A ⊆ B implies A∗ ⊆ B∗ and A∗∗ ⊆ B∗∗,
(2)If L1 ⊆ L2, then A∗(L1) ⊇ A∗(L2) and A∗∗(L1) ⊇

A∗∗(L2),

(3)A∗ = R(A∗)⊆ R(A) and A∗∗ = R(A∗∗)⊆ R(A),
(4)(A∗)∗ = A∗ and (A∗∗)∗∗ = A∗∗,
(5)R(A)⊆ ((Ac)∗)c and R(A)⊆ (((A)c)∗∗)c,

(6)(A∩B)∗ ⊆ A∗∩B∗ and (A∩B)∗∗ ⊆ A∗∗∩B∗∗,
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(7)(A∪B)∗ = A∗∪B∗ and (A∪B)∗∗ = A∗∗∪B∗∗,
(8)A ∈ L , if and only if A∼ = φ , and A ∈ L , if and only

if A∗∗ = φ ,
(9)A∗∗ ⊆ A∗.

Proof.We proof for A∗, and A∗∗ is by the same way.

(1)Suppose that A∗ ⊈ B∗, then there exists G ⊆ X with
B−G∈L and R(G)=G such that A∗ ⊈G=B∗. Since
A ⊆ B, then A−G ⊆ B−G and A−G ∈L , R(G) = G.
Thus, A∗ ⊆ G, which is a contradiction. Hence, A∗ ⊆
B∗.

(2)Suppose that A∗(L1) ⊉ A∗(L2), then there exists
G ⊆ X with A − G ∈ L1 and R(G) = G such that
A∗(L2) ⊈ G = A∗(L1). Since L1 ⊆ L2, then
A−G ∈ L2, R(G) = G, and then A∗(L2)⊆ G, which
is a contradiction. Thus, A∗(L1)⊇ A∗(L2).

(3)It is obvious that, R(A∗) = A∗ direct. Since
A ⊆ R(A),R(R(A)) = R(A), then A∗ ⊆ R(A). Since
A∗ ⊆ R(A), then R(A∗)⊆ R(R(A)) = R(A).

(4)From (3), we have (A∗)∗ = R((A∗)∗) ⊆ R(A∗) = A∗.
Hence, (A∗)∗ ⊆ A∗.
Conversely, suppose that A∗ = K ⊈ (A∗)∗ = G. Then,
A∗−G ∈ L , R(G) = G. and, A−K ∈ L , R(K) = K.
Thus K−G ∈ L , and A−K ∈ L , then A−G ⊆ (K−
G)∪ (A−K) ∈ L ,R(G) = G, and therefore A∗ = K ⊆
G, which is a contradiction. Hence A∗ = (A∗)∗.

(5)From (3), we have (Ac)∗ ⊆ R(Ac), then
R(A) = (R(Ac))c ⊆ ((Ac)∗)c.

(6)From (1), we have (A∩B)∗ ⊆ A∗ and (A∩B)∗ ⊆ B∗,
then (A∩B)∗ ⊆ A∗∩B∗.

(7)A∗ ∪ B∗ ⊆ (A ∪ B)∗ direct. Suppose that
(A∪B)∗ ⊈ A∗∪B∗, then there exists G1,G2 ⊆ X with
A−G1 ∈ L ,B−G2 ∈ L , R(G1) = G1, R(G2) = G2
such that (A ∪ B)∗ ⊈ G1 ∪ G2. Therefore
(A ∪ B)− (G1 ∪ G2) ∈ L , R(G1 ∪ G2) = G1 ∪ G2.
Thus, (A ∪ B)∗ ⊆ G1 ∪ G2, which is a contradiction.
Hence, (A∪B)∗ ⊆ A∗∪B∗.

(8)If A ∈ L , then A−φ = A ∈ L and R(φ) = φ . Hence
A∗ = φ . Conversely, if A∗ = φ , then A−φ = A ∈ L .

(9)Suppose that A∗∗ ⊈ A∗, then there exists G ⊆ X with
A−G ∈ L and R(G) = G such that A∗∗ ⊈ G = A∗.

Since R(G) ⊆ R(G) = G, then A∗∗ ⊆ G, which is a
contradiction. Hence, A∗∗ ⊆ A∗.

Remark 11Let (X ,R,L ) be an ideal approximation
space and A,B ⊆ X . The following examples show that in
general:

(1)A∗ ⊆ B∗ ⇏ A ⊆ B.
(2)A∗(L1)⊇ A∗(L2)⇏ L1 ⊆ L2.
(3)A∗ ̸= R(A) and R(A) ̸= ((Ac)∗)c.
(4)(A∩B)∗ ̸= A∗∩B∗.
(5)A∗∗ ̸= A∗.

Example 11

(1)Let X = {x,y,z},R = {(x,x),(x,y),(x,z),(y,y),(y,z),(z,z)},
and L = {φ ,{y}}. Then,

< x > R = {x,y,z},< y > R = {y,z},< z > R = {z}. If
A = {y},B = {x}, then A∗ = φ . Also, {x} is the smallest set
with {x} − {x} = φ ∈ L ,R({x}) = {x}, then B∗ = {x}.
Thus, A∗ ⊆ B∗, but A ⊈ B.

(2)In (1), if A = {x} and L1 = {φ ,{y}},L2 = {φ ,{x}}, then
A∗(L1) = {x} ⊇ A∼(L )2 = φ , but L1 ⊈ L2.

(3)In (1), A= {y},A∗ = φ , but R(A)= {y}. So, A∗ ̸=R(A). Also,
if A = {x,z}, then (Ac)∗ = ({y})∗ = φ . But, R(A) = {x,z}.
Thus, R(A) = {x,z} ̸= ((Ac)∗)c = X .

(4)In (1), if L = {φ ,{z}},A = {x} and B = {y}, then, A∗ =
{x} and {x,y} is the smallest set with {y}− {x,y} = φ ∈
L ,R({x,y}) = {x,y}, then B∗ = {x,y} but (A∩B)∗ = φ∗ =
φ . Thus, (A∩B)∗ ̸= A∗∩B∗.

(5)Let
X = {x,y,z} = {(x,x),(x,y),(x,z),(y,x),(y,y),(z,y),(z,z)},
L = {φ ,{x}} Then,
< x > R = {x,y},< y > R = {y},< z > R = {y,z}. Also,
R < x >= {x},R < y >= {x,y},R < z >= {x,z}. Therefore,
R < x > R = {x},R < y > R = {y},R < z > R = {z}. If
A = {x,y}, then X is the smallest set with
{x,y}−X = φ ∈ L ,R(X) = R(X) = X , then A∗ = X . Also,
{y} is the smallest set with {x,y} − {y} = {x} ∈
L ,R({y}) = {y}∪{x ∈ X : R < x > R∩{y} /∈ I } = {y},
then A∗∗ = {y}. So, A∗∗ ̸= A∗.

Definition 12Let (X ,R,L ) be an ideal approximation
space. Then, for any A ⊆ X , define the operators
int∗R(A),cl∗R(A), int∗∗R (A),cl∗∗R (A) : P(X) −→ P(X) as
follows:

cl∗R(A) = A∪A∗ and int∗R(A) = A∩ ((Ac)∗)c ∀A ⊆ X
(1.1)

cl∗∗R (A) = A∪A∗∗ and int∗∗R (A) = A∩ ((Ac)∗∗)c ∀A ⊆ X .
(1.2)

Now, if L = {φ}, then from Corollary 11 ,
cl∗R(A) = R(A) = A∗, int∗R(A) = R(A) = ((Ac)∗)c. and
cl∗∗R (A) = R(A) = A∗∗, int∗∗R (A) = R(A) = ((Ac)∗∗)c.

Proposition 12Let (X ,R,L ) be an ideal approximation
space. Then, for any A,B ⊆ X , we have:

(1)LR(A)⊆ int∗R(A)⊆ int∗∗R (A)⊆ A ⊆ cl∗∗R (A)⊆ cl∗R(A)⊆
UR(A).

(2)cl∗R(A
c) = (int∗R(A))

c, int∗R(A
c) = (cl∗R(A))

c and
cl∗∗R (Ac) = (int∗∗R (A))c, int∗∗R (Ac) = (cl∗∗R (A))c.

(3)If A ⊆ B, then cl∗R(A)⊆ cl∗R(B), int∗R(A)⊆ int∗R(B) and
cl∗∗R (A)⊆ cl∗∗R (B), int∗∗R (A)⊆ int∗∗R (B).

(4)int∗R(A∩B) = int∗R(A)∩ int∗R(A) and
int∗∗R (A∩B) = int∗∗R (A)∩ int∗∗R (A).

(5)int∗R(A ∪ B) ⊇ int∗R(A)∪ int∗R(A) and
int∗∗R (A∪B)⊇ int∗∗R (A)∪ int∗∗R (A).

(6)cl∗R(A∩B)⊆ cl∗R(A)∩ cl∗R(B) and
cl∗∗R (A∩B)⊆ cl∗∗R (A)∩ cl∗∗R (B).

(7)cl∗R(A∪B) = cl∗R(A)∪ cl∗R(B) and
cl∗∗R (A∪B) = cl∗∗R (A)∪ cl∗∗R (B).

(8)cl∗R(cl∗R(A)) = cl∗R(A) and int∗R(int∗R(A)) = int∗R(A).
(9)cl∗∗R (cl∗∗R (A)) = cl∗∗R (A) and

int∗∗R (int∗∗R (A)) = int∗∗R (A).
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Proof. (1)Direct from Proposition 11 (3),(5),(9).
(2)

[int∗R(A)]
c = [A∩ ((Ac)∗)c]c

= (Ac ∪Ac)∗

= cl∗R(A
c).

By the same way, we can prove that
int∗R(A

c) = (cl∗R(A))
c.

(3)From Proposition 11 (1), we get A ⊆ B, implies that
cl∗R(A) = A ∪ A∗ ⊆ B ∪ B∗ = cl∗R(B). Second part is
similar.

(4)By (2), we have

int∗R(A∩B) = [cl∗R(A∩B)c]c

= [cl∗R(A
c ∪Bc)]c

= [cl∗R(A
c)∪ cl∗R(B

c)]c

= [cl∗R(A
c)]c ∩ [cl∗R(B

c)]c

= int∗R(A)∩ int∗R(A).

Second part is similar.
(5)Similar to (4).
(6)From Proposition 11 (6), we get cl∗R(A∩B) = (A∩B)∪

(A∩B)∗ ⊆ (A∩B)∪(A∗∩B∗)⊆ (A∪A∗)∩(B∪B∗) =
cl∗R(A)∩ cl∗R(B).

(7)Similar to (6) by using Proposition 11 (7).
(8)From Proposition 11 (4), we get

cl∗R(cl∗R(A)) = cl∗R[A∪A∗]

= cl∗R(A)∪ cl∗R(A
∗)

= cl∗R(A).

Second part is similar.
(9)Similar to (8).

Corollary 12Let (X ,R,L ) be an ideal approximation
space. Then, the operator cl∗R(A) on P(X) defined in
Equation 1.1, induces a topology on X denoted by τ∗ and
defined by τ∗ = {A ⊆ X : cl∗R(A

c) = Ac}. Also, the
operator cl∗∗R (A) on P(X) defined in Equation 1.2,
induces a topology on X denoted by τ∗∗ and defined by
τ∗∗ = {A ⊆ X : cl∗∗R (Ac) = Ac}. It is clear that
τ∼ ⊆ τ∗ ⊆ τ∗∗.

2 Lower separation axioms in ideal
approximation spaces

Definition 21

(1)An ideal approximation space (X ,R,L ) is T ∗
0 (resp.

T ∗∗
0 ) space iff ∀x ̸= y ∈ X there exists A ⊆ X such that

x ∈ int∗R(A), (resp. x ∈ int∗∗R (A)) such that y /∈ A or y ∈
int∗R(A) (resp. y ∈ int∗∗R (A)) such that x /∈ A.

(2)An ideal approximation space (X ,R,L ) is T ∗
1 (resp.

T ∗∗
1 ) space iff ∀x ̸= y ∈ X there exists A,B ⊆ X such

that x ∈ int∗R(A),y ∈ int∗R(B) (resp. x ∈ int∗∗R (A),y ∈
int∗∗R (B)) such that x /∈ B and y /∈ A.

(3)An ideal approximation space (X ,R,L ) is T ∗
2 (resp.

T ∗∗
2 ) space iff ∀x ̸= y ∈ X there exists A,B ⊆ X such

that x ∈ int∗R(A),y ∈ int∗R(B) (resp. x ∈ int∗∗R (A),y ∈
int∗∗R (B)) such that A∩B = φ .

Remark 21 (1)From LR(A)⊆ int∗R(A)⊆ int∗∗R (A) we have
the following implication.

Figure 1: Implication

(2)Consider an ideal approximation space (X ,R,L ) and
L = {φ}. Then, the ideal separation axioms T ∗

i are
identical to the separation axioms Ti, i = 0,1,2.

Example 21

(1)Let X = {a,b,c},R = {(a,a),(a,b),(b,b),(c,c)}.
Then,
< a > R = {a,b},< b > R = {b},< c > R = {c}. So,
for a ̸= b,b ̸= c there exists {b} so that
b ∈ LR({b}) = {b} and a,c /∈ {b}. For a ̸= c there
exists {c} so that c ∈ LR({c}) = {c} and a /∈ {c}.
Hence, X is T0-space but not T1−space since we can
not find a set A ⊆ X such that a ∈ LR(A) and not
containing b.

(2)In (1) if L = {φ ,{a},{c},{a,c}}, then for a ̸= b,b ̸= c
there exists A = {b} so that ({b}c)∗ = ({a,c})∗ = φ .
Then, int∗R(A) = A∩ ((Ac)∗)c = {b}∩X = {b} and b ∈
{b} but a,c /∈ {b}. For a ̸= c there exists A = {c} so
that (Ac)∗ = ({a,b})∗ = {a,b}. Then, int∗R(A) = A∩
((Ac)∗)c = {c}∩ {c} = {c} and c ∈ {c} but a /∈ {c}.
Hence, X is T ∗

0 -space. But X is not T ∗
1 −space since we

can not find a set A ⊆ X such that a ∈ int∗R(A) and not
containing b.

(3)Let
X = {a,b,c},R = {(a,a),(a,b),(b,a),(b,b),(c,c)}
and L = {φ ,{a},{b},{a,b}}, Then,
< a > R = {a,b},< b > R = {a,b},< c > R = {c}.
Then, there exist A = {a},B = {b},C = {c} so that
({a}c)∗ = ({b,c})∗ = {c}. Then,
int∗R(A) = A ∩ ((Ac)∗)c = {a} ∩ {a,b} = {a}. Also,
({b}c)∗ = ({a,c})∗ = {c}. Then,
int∗R(B) = B ∩ ((Bc)∗)c = {b} ∩ {a,b} = {b}, and
({c}c)∗ = ({a,b})∗ = φ ,
int∗R(C) =C∩ ((Cc)∗)c = {c}∩X = {c}, which means
for a ̸= b, there exist A,B ⊆ X such that
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a ∈ int∗R(A) = {a},b /∈ A
and b ∈ int∗R(B) = {b},a /∈ {b}. Similarly for a ̸= c
and b ̸= c.Hence, X is T ∗

1 -space. It is also T ∗
0 -space.

But X is neither T0−space nor T1−space since we can
not find a set A ⊆ X such that a ∈ LR(A),b /∈ A or
b ∈ LR(A),a /∈ A.

(4)In (1) if L = {φ ,{a},{b},{a,b}}, then int∗R({a}) =
{a}, int∗R({b}) = {b} and int∗R({c}) = {c}. Hence, X
is T ∗

2 −space. But, X is not T2−space since it is not T1.

Example 22

(1)Let
X = {a,b,c},R = {(a,a),(a,b),(b,a),(b,b),(c,c)}
and L = {φ ,{b}}. Then,
< a > R = {a,b},< b > R = {a,b},< c > R = {c}.
Also,
R < a >= {a,b},R < b >= {a,b},R < c >= {c}.
Therefore, R < a > R = {a,b},R < b > R =
{a,b},R < c > R = {c}. Then for a ̸= b,a ̸= c there
exists A = {a} so that ({a}c)∗∗ = ({b,c})∗∗ = {c}.
Then, int∗∗R (A) = A∩ ((Ac)∗∗)c = {a} ∩ {a,b} = {a}
and a ∈ {a} but b,c /∈ {a}. For a ̸= c there exists
A = {c} so that (Ac)∗∗ = ({a,b})∗∗ = {a,b}. Then,
int∗∗R (A) = A ∩ ((Ac)∗∗)c = {c} ∩ {c} = {c} and
c ∈ {c} but a /∈ {c}. Hence, X is T ∗∗

0 -space but not
T ∗∗

1 −space since we can not find a set A ⊆ X such
that b ∈ int∗∗R (A) and not containing a.

(2)Let X = {a,b,c},R = {(a,a),(a,b),(b,c),(c,c)} and
L = {φ ,{c}}. Then,
< a > R = {a,b},< b > R = {a,b},< c > R = {c}.
Also,
R < a >= {a},R < b >= {b,c},R < c >= {b,c}.
Therefore, R < a > R = {a},R < b > R = {b},R <
c > R = {c}.Then, there exist
A = {a},B = {b},C = {c} so that
({a}c)∗∗ = ({b,c})∗∗ = {b}. Then,
int∗∗R (A) = A∩ ((Ac)∗∗)c = {a} ∩ {a,c} = {a}. Also,
({b}c)∗∗ = ({a,c})∗∗ = {a}. Then,
int∗∗R (B) = B ∩ ((Bc)∗∗)c = {b} ∩ {b,c} = {b}, and
({c}c)∗∗ = ({a,b})∗∗ = {a,b},
int∗∗R (C) = C ∩ ((Cc)∗∗)c = {c} ∩ {c} = {c}, which
means for a ̸= b, there exist A,B ⊆ X such that
a ∈ int∗∗R (A) = {a},b /∈ A and
b ∈ int∗∗R (B) = {b},a /∈ {b}. Similarly for a ̸= c and
b ̸= c. Hence, X is T ∗∗

1 -space. It is also T ∗∗
0 -space. But

X is neither T ∗
0 −space nor T ∗

1 −space since we can
not find a set A ⊆ X such that a ∈ int∗R(A),b /∈ A or
b ∈ int∗R(A),a /∈ A.

(3)In (2) we have, int∗∗R ({a}) = {a}, int∗∗R ({b}) = {b} and
int∗∗R ({c})= {c}. Hence, X is T ∗∗

2 −space. But, X is not
T ∗

2 −space since it is not T ∗
1 .

Example 23Let X be an infinite set and R = X ×X . If L f
is an ideal of finite subsets of X , then

R(A) = R(A) =
{

A if A ∈ L f
X o.w.

Thus,

(Ac)∗ = (Ac)∗∗ =

{
φ if Ac ∈ L f
X o.w.

and so,

int∗R(A) = int∗∗R (A) =
{

A if Ac ∈ L f
φ o.w.

So, ∀x ̸= y ∈ X , we have:
(x ∈ int∗R({y}c) = int∗∗R ({y}c) = {y}c,y /∈ {y}c) (y ∈
int∗R({x}c) = int∗∗R ({x}c) = {x}c,x /∈ {x}c). Hence, X is
T ∗

1 ,T ∗∗
1 -space. But X is neither T ∗

2 nor T ∗∗
2 . space, since if

x ∈ int∗R(A),y ∈ int∗RR(B) and A ∩ B = φ , then
int∗R(A) ∩ int∗RR(B) = φ and int∗RR(A) ⊆ (int∗RR(B))c

which is impossible because int∗RR(A) is infinite and
(int∗RR(B))c is finite.

Proposition 21For an ideal approximation space
(X ,R,I ), the following are equivalent:

(1)X is T ∗
0 −space.

(2)cl∗R({x}) ̸= cl∗R({y}) for each x ̸= y ∈ X .

Proof.

(1)⇒ (2): For each x ̸= y ∈ X , by (1) there exists A ⊆
X such that x ∈ int∗R(A) = A∩ ((Ac)∗)c,y /∈ A. Then,
x ∈ ((Ac)∗)c,y ∈ Ac. Thus, {y}− (Ac)∗ ⊆ Ac − (Ac)∗ ∈
L ,(Ac)∗ = R((Ac)∗). So,({y})∗ ⊆ (Ac)∗. Hence, x /∈
{y}∪ ({y})∗ = cl∗R({y}). Therefore,

cl∗R({x}) ̸= cl∗R({y}).

(2)⇒ (1): For each x ̸= y ∈ X , by (2),
x /∈ cl∗R({y}) = {y}∪ ({y})∗ or y /∈ cl∗R({x}) = {x}∪
({x})∗. Thus, (x ∈ (((X −{y})c)∗)c,y /∈ X −{y}) or
(y ∈ (((X −{x})c)∗)c,x /∈ X −{x}), then (x ∈ int∗R(X −
{y}),y /∈ X −{y}) or (y ∈ int∗R(X −{y}),x /∈ X −{x}),
Hence (Y,R,L ) is T ∗

0 −space.

Corollary 21For an ideal approximation space (X ,R,L ),
the following are equivalent:

(1)X is T ∗∗
0 −space.

(2)cl∗∗R ({x}) ̸= cl∗∗R ({y}) for each x ̸= y ∈ X .

Proposition 22For an ideal approximation space
(X ,R,L ), the following are equivalent:

(1)X is T ∗
1 −space.

(2)cl∗R({x}) = {x} for each x ∈ X .
(3)({x})∗ ⊆ {x} for each x ∈ X .

Proof.

(1)⇒ (2): Suppose that (X ,R,L ) is T ∗
1 −space and x ∈ X

is an arbitrary point, then for y ∈ X −{x},x ̸= y and
∃A ⊆ X such that y ∈ int∗R(A),x /∈ A. Thus,
y ∈ ((Ac)∗)c,x ∈ Ac. Thus, {x}− (Ac)∗ ⊆ Ac − (Ac)∗ ∈
L ,(Ac)∗ = R((Ac)∗). So,({x})∗ ⊆ (Ac)∗. Hence, y /∈
{x}∪({x})∗ = cl∗R({x}) for any arbitrary point y∈X −
{x}. Hence,

cl∗R({x}) = {x}.
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(2)⇒ (3): For each x ∈ X , by (2), cl∗R({x}) = {x},{x}−
{x} ∈ L . Thus, ({x})∗ ⊆ {x}.

(3)⇒ (1): For each x ̸= y ∈ X . By (3)
({x})∗ ⊆ {x},({y})∗ ⊆ {y}. Then
cl∗R({x}) = {x},cl∗R({y}) = {y}, and
int∗R({x}c) = {x}c, int∗R({y}c) = {y}c. Then,
(x ∈ int∗R({y}c),y /∈ {y}c) and
(y ∈ int∗R({x}c),x /∈ {x}c),i.e., X is T ∗

1 −space.

Corollary 22For an ideal approximation space (X ,R,L ),
the following are equivalent:

(1)X is T ∗∗
1 −space.

(2)cl∗∗R ({x}) = {x} for each ∀x ∈ X .
(3)({x})∗∗ ⊆ {x} for each x ∈ X .

Theorem 21For an ideal approximation space (X ,R,L ),
the following are equivalent:

(1)X is T ∗
2 −space.

(2)∃A ⊆ X : x ∈ int∗R(A),y ∈ (cl∗R(A))
c for all x ̸= y ∈ X .

Proof.

(1)⇒ (2): If X is T ∗
2 −space, then ∀x ̸= y ∈ X ; there exists

x ∈ int∗R(A),y ∈ int∗R(B) and A∩B = φ . So, int∗R(B) ⊆
int∗R(A

c)= (cl∗R(A))
c. Hence, x∈ int∗R(A),y∈ int∗R(B)⊆

(clR(A))c.
(2)⇒ (1): Let x ̸= y ∈ X . Then from(2)

x ∈ int∗R(A),y ∈ (cl∗R(A))
c and clearly

int∗R(cl∗R(A))
c = (cl∗R(A))

c and A ∩ (cl∗R(A))
c = φ .

Hence X is T ∗
2 −space.

Corollary 23For an ideal approximation space (X ,R,L ),
the following are equivalent:

(1)X is T ∗∗
2 −space.

(2)∃A⊆ X : x ∈ int∗∗R (A),y∈ (cl∗∗R (A))c for all x ̸= y∈ X .

Definition 22

(1)An ideal approximation space (X ,R,L ) is R∗
0−space

iff cl∗R({x}) = cl∗R({y}) or cl∗R({x}) ∩ cl∗R({y}) = φ

∀x ̸= y ∈ X .
(2)An ideal approximation space (X ,R,L ) is R∗∗

0 −space
iff cl∗∗R ({x}) = cl∗∗R ({y}) or cl∗∗R ({x})∩ cl∗∗R ({y}) = φ

∀x ̸= y ∈ X .

Proposition 23For an ideal approximation space
(X ,R,L ), the following are equivalent:

(1)X is R∗
0−space.

(2)If x ∈ cl∗R({y}) then y ∈ cl∗R({x}) for all x ̸= y ∈ X .

Proof.
(1)⇒ (2): Let x and y be two distinct points in (X ,R,L )
and cl∗R({x}) = cl∗R({y}) or cl∗R({x})∩cl∗R({y}) = φ . In the
former case we have y ∈ cl∗R({x}) and x ∈ cl∗R({y}). In the
latter case we get {x}∩cl∗R({y}) = φ and {y}∩cl∗R({x}) =
φ which mean that x /∈ cl∗R({y}) and y /∈ cl∗R({x})). Hence,
x /∈ cl∗R({y}) and y /∈ cl∗R({x}). So, if x ∈ cl∗R({y}) then
y ∈ cl∗R({x}).

(2)⇒ (1): If x ∈ cl∗R({y}) then y ∈ cl∗R({x}) holds, then
either

(x ∈ cl∗R({y}) and y ∈ cl∗R({x}))

or
(x /∈ cl∗R({y}) and y /∈ cl∗R({x}))

are holds. In the former case we have for x ̸= y ∈ X , then

cl∗R({x}) = cl∗R({y}). (2.1)

In the latter case we get for x ̸= y ∈ X , then

cl∗R({x})∩ cl∗R({y}) = φ . (2.2)

From (2.1) and (2.2) the proof is complete.

Corollary 24For an ideal approximation space (X ,R,L ),
the following are equivalent:

(1)X is R∗∗
0 −space.

(2)If x ∈ cl∗∗R ({y}) then y ∈ cl∗∗R ({x}) for all x ̸= y ∈ X .

Corollary 25For an ideal approximation space (X ,R,L ),
the following are holds,

(1)T ∗
1 = R∗

0 +T ∗
0 .

(2)T ∗∗
1 = R∗∗

0 +T ∗∗
0 .

Proof.Immediately derived from Definition 21,
Proposition 23.

Remark 22We introduce the following examples to show
that R∗

0 ⇎ T ∗
0 , R∗

0 ⇎ R∗∗
0 , and R∗∗

0 ⇎ T ∗∗
0 .

Example 24

(1)In Example 21 (2) X is T ∗
0 -space. But we have

{a}∗ = φ ,{b}∗ = {a,b}. Then,
cl∗R({a}) = {a} ∪ ({a})∗ = {a},cl∗R({b}) =
{b}∪ ({b})∗ = {a,b}. This means that, a ∈ cl∗R({b})
but b /∈ cl∗R({a}). Therefore, X is not R∗

0−space.
(2)Let

X = {a,b,c},R = {(a,a),(a,b),(b,a),(b,b),(c,c)}
and L = {φ ,{c}}. Then,
< a > R = {a,b},< b > R = {a,b},< c > R = {c}.
Then, cl∗R({a}) = cl∗R({b}) = {a,b} and
cl∗R({c}) = {c}. Therefore,

(i) For a ̸= b, a ∈ cl∗R({b}) and b ∈ cl∗R({a}).
(ii) For b ̸= c, b /∈ cl∗R({c}) and c /∈ cl∗R({b}).
(iii) For a ̸= c, a /∈ cl∗R({c}) and c /∈ cl∗R({a}).

Hence, X is R∗
0-space. But X is not T ∗

0 -space since we
can not find a set A ⊆ X such that a ∈ int∗R(A) and not
containing b or b ∈ int∗R(A) and not containing a.

(3)In Example 22 (1) X is T ∗∗
0 -space. But we have {a}∗∗ =

{a,b},{b}∗∗ = φ . Then, cl∗∗R ({a}) = {a}∪ ({a})∗∗ =
{a,b},cl∗∗R ({b}) = {b} ∪ ({b})∗∗ = {b}. This means
that, b ∈ cl∗∗R ({a}) but a /∈ cl∗∗R ({b}). Therefore, X is
not R∗∗

0 −space.
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(4)In Example 22 (1) if L = {φ ,{c}}. Then, cl∗∗R ({a}) =
cl∗∗R ({b}) = {a,b} and cl∗∗R ({c}) = {c}. Therefore,

(i) For a ̸= b, a ∈ cl∗∗R ({b}) and b ∈ cl∗∗R ({a}).
(ii) For b ̸= c, b /∈ cl∗∗R ({c}) and c /∈ cl∗∗R ({b}).
(iii) For a ̸= c, a /∈ cl∗∗R ({c}) and c /∈ cl∗∗R ({a}).

Hence, X is R∗∗
0 -space. But X is not T ∗∗

0 -space since
a ̸= b ∈ X cannot be separated.

(5)In Example 22 (2) if L = {φ ,{c}}. Then, cl∗R({a}) =
cl∗R({b}) = {a,b} and cl∗R({c}) = {c}. Therefore,

(i) For a ̸= b, a ∈ cl∗R({b}) and b ∈ cl∗R({a}).
(ii) For b ̸= c, b /∈ cl∗R({c}) and c /∈ cl∗R({b}).
(iii) For a ̸= c, a /∈ cl∗R({c}) and c /∈ cl∗R({a}).

Hence, X is R∗
0-space. But,

cl∗∗R ({a}) = {a},cl∗∗R ({b}) = {a,b}. Then,
a ∈ cl∗∗R ({b}),b /∈ cl∗∗R ({a}). Therefore, X is not R∗∗

0 -
space.

(6)Let X = {a,b,c},
R = {(a,a),(a,b),(a,c),(b,b),(b,c),(c,c)}, and
L = {φ ,{a},{c},{a,c}}. Then,
< a > R = {a,b,c},< b > R = {b,c},< c > R = {c}.
Also,
R < a >= {a},R < b >= {a,b},R < c >= {a,b,c}.
Therefore, R < a > R = {a},R < b > R = {b},R <
c > R = {c}.Then,
cl∗∗R ({a}) = {a},cl∗∗R ({b}) = {b},cl∗∗R ({c}) = {c}.
Hence, X is R∗∗

0 -space. But,
cl∗R({a}) = {a},cl∗R({b}) = {a,b}. Then,
a ∈ cl∗R({b}),b /∈ cl∗R({a}). This means that, X is not
R∗

0-space.

Definition 23

(1)Let (X ,R1) and (Y,R2) are approximation spaces.
Then, a function f : (X ,R1) −→ (Y,R2) is said to be
continuous if LR1( f−1(V )) ⊇ f−1(LR1(V )) for all
V ∈ Y. It is equivalent to
UR1( f−1(V ))⊆ f−1(UR2(V )) for all V ∈ Y.

(2)Let L be an ideal on X. Then, a function
f : (X ,R1,L ) −→ (Y,R2) is said to be ∗−continuous
(resp. ∗∗−continuous)
if int∗R1

( f−1(V ))⊇ f−1(LR1(V ))

(resp. int∗∗R1
( f−1(V )) ⊇ f−1(LR1(V )) ) for all V ∈ Y. It is

equivalent to cl∗R1
( f−1(V )) ⊆ f−1(UR2(V ) (resp.

cl∗∗R1
( f−1(V ))⊆ f−1(UR2(V )) for all V ∈ Y.

Remark 23From Theorem 01 (3) we have the following
diagram:

Continuous =⇒∗− continuous =⇒∗∗−continuous.

Next examples show that the Implication in the diagram is
not reversible.

Example 25 Let X = {a,b,c},
R1 = {(a,a),(a,b),(a,c),(b,b),(b,c)},Y = {1,2,3} and
R2 = {(1,1),(1,2),(2,1),(2,2),(3,3)}. Then, < a >

R1 = {a,b,c},< b > R1 = {b,c},< c > R1 = {b,c}.
Also, R1 < a >= {a},R1 < b >= {a,b},R1 < c >= φ .
Therefore,
R1 < a > R1 = {a},R1 < b > R1 = {b},R1 < c > R1 = φ .
and,
< 1 > R2 = {1,2},< 2 > R2 = {1,2},< 3 > R2 = {3}.
Also,
R2 < 1 >= {1,2},R2 < 2 >= {1,2},R2 < 3 >= {3}.
Therefore, R2 < 1 > R2 = {1,2},R2 < 2 > R2 =
{1,2},R2 < 3 > R2 = {3}. Let f : (X ,R1,L ) −→ (Y,R2)
where f (a) = f (b) = 1, f (c) = 3. Then,

(1)Consider L = {φ ,{b},{c},{b,c}}. Then,
int∗R1

( f−1({1})) = {a,b} ⊇ f−1(LR1({1})) = φ ,
int∗R1

( f−1({2})) = φ ⊇ f−1(LR1({2})) = φ ,

int∗R1
( f−1({3})) = {c} ⊇ f−1(LR1({3})) = {c},

int∗R1
( f−1({1,2})) = {a,b} ⊇ f−1(LR1({1,2})) =

{a,b},
int∗R1

( f−1({1,3})) = X ⊇ f−1(LR1({1,3})) = {c},
and
int∗R1

( f−1({2,3})) = {c} ⊇ f−1(LR1({2,3})) = {c}.
So, X is ∗−continuous. But X is not continuous since
LR1( f−1({3})) = φ ⊉ f−1(LR1({3})) = {c}.

(2)Consider L = {φ ,{a}}. Then,
int∗∗R1

( f−1({1})) = {a,b} ⊇ f−1(LR1({1})) = φ ,
int∗∗R1

( f−1({2})) = φ ⊇ f−1(LR1({2})) = φ ,

int∗∗R1
( f−1({3})) = {c} ⊇ f−1(LR1({3})) = {c},

int∗∗R1
( f−1({1,2})) = {a,b} ⊇ f−1(LR1({1,2})) =

{a,b},
int∗∗R1

( f−1({1,3})) = X ⊇ f−1(LR1({1,3})) = {c},
and
int∗∗R1

( f−1({2,3})) = {c} ⊇ f−1(LR1({2,3})) = {c}.
So, X is ∗ ∗−continuous. But X is not ∗−continuous
since
int∗∗R1

( f−1({1,2})) = φ ⊉ f−1(LR1({1,2})) = {a,b}.

Theorem 22Let f : (X ,R1) −→ (Y,R2) be an injective
continuous function. Then, (X ,R1,L ) is T ∗

i −space if
(Y,R2) is Ti− space, i = 0,1,2.

Proof.We proof for i = 2. Since x ̸= y in X implies that
f (x) ̸= f (y) in Y, and from Y is T2− space, then there
exist V,W ⊆ Y with f (x) ∈ LR1(V ), f (y) ∈ LR1(W ) and
V ∩W = φ , that is x ∈ f−1(LR1(V )), y ∈ f−1(LR1(W ))

and f−1(V )∩ f−1(W ) = φ . Since f is continuous, then
x ∈ LR1( f−1(V )), y ∈ LR1( f−1(W )), and then
x ∈ int∗R1

( f−1(V )),y ∈ int∗R1
( f−1(W )). That is, there

exists A = f−1(V ),B = f−1(W ) in X with
x ∈ intR1

∗(A),y ∈ int∗R1
(B) and A ∩ B = φ . Hence,

(X ,R1,L ) is T ∗
2 −space. For i = 0,1, are similar.

Corollary 26Let f : (X ,R1) −→ (Y,R2) be an injective
continuous function. Then, (X ,R1,L ) is T ∗∗

i −space if
(Y,R2) is Ti− space, i = 0,1,2.
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3 Connectedness in ideal approximation
spaces

Definition 31Let (X ,R) be an approximation space. Then,

(1)A,B ⊆ X are called separated sets if UR(A)∩B = A∩
UR(B) = φ .

(2)Y ⊆ X is called disconnected set if there exists
separated sets A,B ⊆ X , such that Y ⊆ A∪B. and, Y
is called connected if it is not disconnected.

(3)(X ,R) is called disconnected space if there exists
separated sets A,B ⊆ X , such that A ∪ B = X. An
approximation space (X ,R) is called connected space
if it is not disconnected space.

Definition 32Let (X ,R,L ) be an ideal approximation
space. Then,

(1)A,B ⊆ X are called ∗−separated (resp.
∗ ∗ −separated) sets if cl∗R(A)∩ B = A ∩ cl∗R(B) = φ

(resp. cl∗∗R (A)∩B = A∩ cl∗∗R (B) = φ ).
(2)Y ⊆ X is called ∗−disconnected (resp.

∗ ∗ −disconnected) set if there exists ∗−separated
(resp. ∗ ∗ −separated) sets A,B ⊆ X , such that
Y ⊆ A ∪ B. and, Y is called ∗−connected (resp.
∗ ∗ −connected) if it is not ∗−disconnected (resp.
∗∗−disconnected).

(3)(X ,R,L ) is called ∗−disconnected (resp.
∗ ∗−disconnected) space if there exists ∗−separated
(resp. ∗ ∗ −separated) sets A,B ⊆ X , such that
A∪B = X. An ideal approximation space (X ,R,L ) is
called ∗−connected (resp. ∗ ∗−connected) space if it
is not ∗−disconnected (resp. ∗ ∗ −disconnected)
space.

Remark 31 (1)We have the following diagrams:

separated =⇒∗− separated =⇒∗∗−separated.

and hence,

∗∗−connected =⇒∗− connected =⇒ connected.

Next examples show that the Implication in the
diagrams is not reversible.

(2)For L = {φ}, observe that ∗−connected and
connected are identical.

Example 31Let X = {a,b,c,d},R =
{(a,a),(a,b),(b,b),(b,c),(c,c),(d,d),(d,b)} Then,
< a > R = {a,b},< b > R = {b},< c > R = {c},< d >
R = {b,d}. Also, R < a >= {a},R < b >= {b},R <
c >= {b,c},R < d >= {d}. Therefore,
R < a > R = {a},R < b > R = {b},R < c > R = {c},R <
d > R = {d}. Then,

(1)Consider L = {φ ,{b}} and A = {a,c},B = {b,d}.
Then UR(A) = A∪{x ∈ X :< x > R∩A ̸= φ}= {a,c},
and UR(B) = {a,b,d}. Also, A∗ = {a,c},B∗ = {d}. So,
cl∗R(A) =A∪A∗ = {a,c} and cl∗R(B) =B∪B∗ = {b,d}.
Thus, cl∗R(A)∩B = A∩ cl∗R(B) = φ , but, A∩UR(B) =
{a} ̸= φ . Hence, A,B are ∗−separated sets but are not
separated sets.

(2)Consider L = {φ ,{d}} and A = {b},B = {a,d}. Then
A∗ = {a,b,d},B∗ = {a}. So, cl∗R(A) = A ∪ A∗ = {a,b,d}
and cl∗R(B) = B∪B∗ = {a,d}. Also, A∗∗ = {b},B∗∗ = {a}.
So, cl∗∗R (A) = A∪A∗∗ = {b} and
cl∗∗R (B) = B∪B∗∗ = {a,d}.Thus,
cl∗∗R (A)∩B = A∩ cl∗∗R (B) = φ , but cl∗R(A)∩B = {a} ≠ φ ,
Hence, A,B are ∗∗−separated sets but are not ∗−separated
sets.

Example 32Let
X = {a,b,c},R = {(a,a),(a,b),(a,c),(b,b),(b,c)}.
Then,
< a > R = {a,b,c},< b > R = {b,c},< c > R = {b,c}.
Also, R < a >= {a},R < b >= {a,b},R < c >= φ .
Therefore,
R < a > R = {a},R < b > R = {b},R < c > R = φ . Then,

(1)Consider L = {φ ,{b},{c},{b,c}}. Here the space X
is connected space because, UR({b}) = UR({c}) =
UR({b,c}) = UR({a,b}) = UR({a,c}) = X and
UR({a}) = {a}. But is not ∗−connected space, since
X = {a}∪{b,c},
cl∗R({a})∩{b,c}= {a}∩ cl∗R({b,c}) = φ .

(2)Consider L = {φ ,{a}}. Here the space X is
∗−connected space because, cl∗R({b}) = cl∗R({c}) =
cl∗R({b,c}) = cl∗R({a,b}) = cl∗R({a,c}) = X and
cl∗R({a}) = {a}. But is not ∗ ∗ −connected space,
since X = {a}∪{b,c},
cl∗∗R ({a})∩{b,c}= {a}∩ cl∗∗R ({b,c}) = φ .

Proposition 31Let (X ,R,L ) be an ideal approximation
space. Then, the following are equivalent.

(1)X is ∗−connected,
(2)For each A,B ⊆ X with

A ∩ B = φ , int∗R(A) = A, int∗R(B) = B and A ∪ B = X ,
then A = φ or B = φ ,

(3)For each A,B⊆X with A∩B= φ ,cl∗R(A)=A,cl∗R(B)=
B and A∪B = X , then A = φ or B = φ .

Proof. (1)⇒ (2): Let A,B ⊆ X with int∗R(A) = A, int∗R(B) =
B such that A∩B = φ and A∪B = X . Then,

cl∗R(A)⊆ cl∗R(B
c) = (int∗R(B))

c = Bc,

cl∗R(B)⊆ cl∗R(A
c) = (int∗R(A))

c = Ac.

Hence, cl∗R(A)∩B = A∩ cl∗R(B) = φ . That is, A,B are
∗−separated sets so that A∪B = X . But, (X ,R,L ) is
∗−connected implies that A = φ or B = φ .

(2)⇒ (3)Let A,B ⊆ X with
A ∩ B = φ ,cl∗R(A) = A,cl∗R(B) = B and A ∪ B = X .
Then, cl∗R(A) ∩ B = A ∩ cl∗R(B) = φ , thus
int∗R(A)∩ B = A ∩ int∗R(B) = φ . So, int∗R(A) = A and
int∗R(B) = B. Hence, A = φ or B = φ , from (2).

(3)⇒ (1) Directly from (2), there are no two proper
∗−separated sets A,B ⊆ X such that A ∪ B = X .
Therefore, (X ,R,L ) is ∗−connected.

Corollary 31Let (X ,R) be an approximation space. Then,
the following are equivalent.
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(1)X is connected,
(2)For each A,B ⊆ X with A∩B = φ ,LR(A) = A,LR(B) =

B and A∪B = X , them A = φ or B = φ ,
(3)For each A,B⊆ X with A∩B= φ ,UR(A) = A,UR(B) =

B and A∪B = X , then A = φ or B = φ .

Corollary 32Let (X ,R,L ) be an ideal approximation
space. Then, the following are equivalent.

(1)X is ∗∗−ideal connected,
(2)For each A,B ⊆ X with

A∩B = φ , int∗∗R (A) = A, int∗∗R (B) = B and A∪B = X ,
then A = φ or B = φ ,

(3)For each A,B ⊆ X with
A∩ B = φ ,cl∗∗R (A) = A,cl∗∗R (B) = B and A∪ B = X ,
then A = φ or B = φ .

Theorem 31Let (X ,R,L ) be an ideal approximation
space and M ⊆ X is ∗−connected. If A,B ⊆ X are ∗−
separated sets with M ⊆ A ∪ B, then either M ⊆ A or
M ⊆ B.

Proof.Let A,B are ∗−separated sets with M ⊆ A∪B. Thus,
cl∗R(A)∩B = A∩cl∗R(B) = φ , and M = (M∩A)∪ (M∩B).
Since, cl∗R(M∩A)∩(M∩B)⊆ cl∗R(M)∩cl∗R(A)∩(M∩B)=
cl∗R(M)∩M∩ cl∗R(A)∩B = M∩φ = φ .

By similar way,
cl∗R(M ∩ B) ∩ (M ∩ A) ⊆ cl∗R(M) ∩ cl∗R(B) ∩ (M ∩ A) =
cl∗R(M)∩M∩ cl∗R(B)∩A = M∩φ = φ .

Then, (M ∩A) and (M ∩B) are ∗−separated sets with
M = (M ∩A)∪ (M ∩B). But M is ∗−connected implies
that M ⊆ A or M ⊆ B.

Corollary 33Let (X ,R) be an ideal approximation space
and M ⊆ X is connected. If A,B ⊆ X are separated sets
with M ⊆ A∪B, then either M ⊆ A or M ⊆ B.

Corollary 34Let (X ,R,L ) be an ideal approximation
space and M ⊆ X is ∗∗−ideal connected. If A,B ⊆ X are
∗ ∗ −ideal separated sets with M ⊆ A ∪ B, then either
M ⊆ A or M ⊆ B.

Theorem 32Let f : (X ,R1,L ) −→ (Y,R2) be an
∗−continuous function. Then, f (A) ⊆ Y is connected set
if A is ∗−connected in X.

Proof.Let f (A) be disconnected. Then, there exists two
separated sets U,V ⊆ Y with f (A) ⊆ U ∪ V. That is,
UR2(U) ∩ V = U ∩ UR2(V ) = φ . Then,
A ⊆ f−1(U)∪ f−1(V ), and since f is ∗−continuous, we
get that:
cl∗R1

( f−1(U)) ∩ f−1(V ) ⊆ f−1(UR2(U)) ∩ f−1(V ) =

f−1(UR2(U)∩V ) = f−1(φ) = φ

and in similar way, we have
cl∗R1

( f−1(V )) ∩ f−1(U) ⊆ f−1(UR2(V )) ∩ f−1(U) =

f−1(UR2(V )∩U) = f−1(φ) = φ .

Hence, f−1(U) and f−1(V ) are ∗−separated sets in
X so that A ⊆ f−1(U)∪ f−1(V ). so A is ∗−disconnected,
which contradicts that A is ∗−connected, this is because of
the incorrect assumption that f (A) is disconnected and so
f (A) is connected set.

Corollary 35Let f : (X ,R1,L ) −→ (Y,R2) be an
∗ ∗ −continuous function. Then, f (A) ⊆ Y is connected
set if A is ∗∗−connected in X.

Here, we modify Definition of < x > R and R < x > in
defining a new type of roughness of ordinary sets. By the
previous definitions of xR,Rx ∈ P(X), we can define the
maximal neighborhoods of any x ∈ X .

Define for any x ∈ X , the sets < x >
⌣
R,

⌣
R < x >∈ X as

follow:

< x >
⌣
R =

{
∪x∈yR(yR) if ∃y : x ∈ yR,

φ o.w.

and
⌣
R < x >=

{
∪x∈yR(Ry) if ∃y : x ∈ Ry,

φ o.w. (3.1)

Equation 3.1 defines the maximal right and the maximal
left neighborhoods of x ∈ X as used in [22, 23], and more
over the authors in [24, 25] introduced new types of rough
sets of an ideal approximation space using the maximal
right and the maximal left neighborhoods accompanied
with an ideal on X . Using Equation 3.1, we can define a
new type of rough sets of an ideal approximation space
(X ,R,L ) as follow:

Definition 33Let (X ,R,L ) be any ideal approximation
space. Then, define the local closed sets
Φ(A),Ψ(A) ∈ P(X) of a set A ⊆ X as follow:

Φ(A) =
⋂
{G ⊆ X : A−G ∈ L ,U ppr(A) = G}. (3.2)

Ψ(A) =
⋂
{G ⊆ X : A−G ∈ L ,U ppr = G}. (3.3)

where

U ppr(A) = A∪{x ∈ X :< x >
⌣
R ∩A /∈ L },

U ppr(A) = A∪{x ∈ X :
⌣
R < x >

⌣
R ∩A /∈ L }.

where
⌣
R < x >

⌣
R is defined as:

⌣
R < x >

⌣
R =

⌣
R < x > ∩< x >

⌣
R.

The roughness of the set A ⊆ X is defined by:

Cl∗R(A) = A∪Φ(A), Int∗R(A) = A∩ (Φ(Ac))c

and Cl∗∗R (A) = A∪Ψ(A), Int∗∗R (A) = A∩ (Ψ(Ac))c.

Int∗R(A), Int∗∗R (A) are the lower sets of A and
Cl∗R(A),Cl∗∗R (A) are the upper sets of A

Definition 33 is a generalization of rough sets in a similar
way to that defined in Definition 12. Also, this definition
introduces the next topologies:
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⊤∗ = {A ⊆ X : Int∗R(A) = A}= {A ⊆ X : Cl∗R(A
c) = Ac}

(3.4)

⊤∗∗ = {A ⊆ X : Int∗∗(A) = A}= {A ⊆ X : Cl∗∗R (Ac) = Ac}
(3.5)

on the ideal approximation space (X ,R,L ). All
topological properties could be studied as in Section (3)
and Section (4). In fact, Separation axioms defined on an
ideal approximation space (X ,R,L ) based on the
maximal neighborhoods imply the corresponding
separation axioms defined in Section (3), and the converse
is not true in general. Also, connectedness based on the
maximal neighborhoods imply the corresponding
connectedness defined in Section (4), and the converse is
not true in general.

Example 33

(1)Let X = {a,b,c},R = {(a,a),(a,b),(b,b),(c,c)} and
L = {φ ,{c}}. Then,
< a > R = {a,b},< b > R = {b},< c > R = {c}.
Also,
< a >

⌣
R = {a,b},< b >

⌣
R = {a,b},< c >

⌣
R = {c}.

Thus, int∗R({b}) = {b} ∩ (((({b})c))∗)c =
{b} ∩ {b,c} = {b}, int∗R({c}) =
{c} ∩ (((({b})c))∗)c = {c} ∩ {c} = {c}. Then, for
a ̸= b,b ̸= c there exists {b} ⊆ X such that
b ∈ int∗R({b}) and a,c /∈ {b}. For a ̸= c there exists
{c} ⊆ X such that c ∈ int∗R({c}) and a /∈ {c}. Hence,
X is T ∗

0 -space but not T0space in sense of Definition
33 because we can not find a set A ⊆ X such that
a ∈ Int∗R(A) and not containing b or b ∈ Int∗R(A) and
not containing a.

(2)Let X = {a,b,c},
R = {(a,a),(a,b),(b,b),(b,c),(c,c),(c,a)}. Then,
< a > R = {a},< b > R = {b},< c > R = {c}. Also,

< a >
⌣
R =< b >

⌣
R =< c >

⌣
R = {a,b,c}. Consider an

ideal L on X defined by L = {φ ,{b},{c},{b,c}}.
L = {φ ,{b},{c},{b,c}}, Then, there exist
A = {a},B = {b},C = {c} so that
int∗R({a}) = {a}, int∗R({b}) = {b}, int∗R({c}) = {c}. Then
for a ̸= b we have A,B ⊆ X such that
a ∈ int∗R(A) = {a},b /∈ A and b ∈ Int∗R(B) = {b},a /∈ B
and A∩B = φ . Similarly for a ̸= c,b ̸= c. Hence, X is T ∗

1
and T ∗

2 -space. But X is neither T1−space nor T−
2 space in

sense of Definition 33 because we can not find A,B ⊆ X
such that a ∈ int∗R(A),b /∈ A and b ∈ int∗R(B),a /∈ B.

Example 34In Example 32 (X ,R,L ) is ∗−disconnected

space. But, < a >
⌣
R =< b >

⌣
R =< c >

⌣
R = {a,b,c}.

Then, Cl∗R({a}) = Cl∗R({a,b}) = Cl∗R({a,c}) = X .
Therefore, we can not find two separated sets A,B ⊆ X to
make (X ,R,L ) a connected space in sense of Definition
33.

4 Conclusions

Here, we introduced separation axioms, connectedness,
and continuity in ideal approximation spaces generated
by using local functions based on minimal
neighborhoods. Moreover, we modified definitions to get
a new pattern of approximation spaces based on maximal
neighborhoods. In addition, some examples are given to
explain the relationship between the two types. In a
proposed future work, a new generalization of rough
fuzzy sets based on a fuzzy ideal L will be introduced on
a fuzzy approximation space (X ,R) (See, [26]).
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