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Abstract: The creation of a treatment strategy and the choice of patient-checking circumstances within many others are supported 

by early diagnosis of COVID-19 infection. It is possible to detect COVID-19 early on by applying a deep learning method to 

radiographic medical lab images. Convolutional neural networks (CNN) are used in this study to improve COVID-19 diagnoses 

using X-ray scans. An automated diagnostic solution that can swiftly deliver accurate diagnostic results is required. CNNs have been 

found to be efficient at classifying medical images using deep learning techniques. Transfer Learning (TF) is the most reliable 

research supervised learning method, offering useful analysis to examine many radiographs image samples, and can considerably 

detect potential and infer preventative detection of COVID-19. Despite its high True Positive, testing healthcare professionals 

remains a serious risk. Three distinct deep TF and regularization-based architectures were studied on chest X-ray images for the 

diagnosis of COVID-19. Because these models already include weights trained on the ImageNet database, large training sets are 

unnecessary. To evaluate the model's performance, 21,165 chest x-ray scan samples were obtained from various sources and 

identified as COVID-19 data collection from four classes in the Kaggle repository. Average metrics results are collected to get the 

actual predictions for all classes. Although Saving training time with TF, an advance improvement for performance can be achieved 

by applying only some parts of the input image with most important segments of the input image are localized. To prove the validity 

of our approach we use Grad Cam algorithm to find the input image parts with most valuable features for decision making. The 

localised image region map is udsed to reproduce a lighter version of the image database with only marked as most important image 

regions. Metrics including precision, F1-Score, confusion matrix, accuracy, sensitivity, specificity, error rate, and error rate have 

been used to assess the performance of all the TF models., besides false positive (FP), Matthews Correlation Coefficient (MCC), and 

Kappa performance measures. In terms of performance, the ResNet-50 model outperforms all others with a low error rate of 0.039 

and achieves more than a 96% accuracy. The study findings proven the proposed model validity as a computer-aided diagnostics 

model with a guarantee to supply help for radiologists quickly and accurately. 

Keywords: Medical Imaging, COVID-19, X-ray imagery, Xception, ResNet-50, InceptionResNetV3, Adamax. 

 

1. Introduction 

      COVID-19, a new virus, was discovered in Wuhan, China, 

at the end of 2019 [1]. The virus has spread across the globe in 

a few months [2,3]. COVID-19 is a deadly virus that produces 

severe symptoms in humans, such as cough (76%) and fever 

(98%) as well as weariness (44%). SARS and respiratory 

sickness (MERS) are both caused by the COVID-19 virus [4]. 

Unfortunately, the death rate from COVID-19 is rising every 

day, which has motivated researchers to put forth endless effort 

to create a tool that can name all COVID subtypes. This has 

increased the demand for COVID-19 risk minimization, early 

identification, and preventive prediction. X-ray image 

evaluations are also recommended by radiologists for COVID-

19 infection-related lung diseases. X-rays have been shown to 

help COVID-19 patients figure out how the disease is getting 

worse and how far along it is [5]. 

According to studies, chest radiographs can supply more 

reliable findings in the diagnosis of COVID-19 [6,7]. Specialist 

radiologists evaluate X-ray and CT scans to check for signs of 

the SARS-CoV-2 infection. However, X-ray image diagnosis 

may be more difficult than CT image diagnosis, and picture 

interpretation needs specialized knowledge [8]. The 

importance of early illness detection and prompt execution of 

treatment procedures to lower mortality and disease 

transmission is critical. In pandemic scenarios such as COVID-

19, the enormous demand for healthcare services to battle 

illness may produce bottlenecks. Since COVID-19 is a recently 

found virus throughout the globe, there is a need for intelligent 

decision support systems because of a lack of ability in 

diagnosis, disagreement, and uncertainty about the efficacy of 

the tests used, and an inadequate number of specialists. 

According to studies, intelligent decision support systems aid 

specialists in making more correct decisions when recognizing 

pneumonia-causing illnesses such as COVID-19.  

The high penetration of COVID-19 and the typical features 

of chest images need automated infection diagnosis and 

localization. Such deep neural network learning algorithms 

with an intelligent foundation have shown superior talent in 

image-related challenges, including in a range of radiological 
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contexts. Although they need a significant amount of training 

data and powerful machines, they have a lot of promise for 

supporting COVID-19 detection. When developing neural 

network models for image classification [9], the task-specific 

characteristics of the images in the different classes change. 

They're based on traditional models that have been fine-tuned 

for purposes such as COVID-19 diagnosis and classification 

using X-ray image data. As the symptoms of COVID-19 in X-

ray images are not always obvious or readable to the human 

eye, the computer can aid the healthcare professional in making 

the diagnosis of COVID-19 owing to its fast speed and 

objective repeatable judgment. The identification and 

classification of COVID-19 have been made possible by 

several computer-aided methods. Deep learning is a strong 

machine learning method that uses a complicated decision-

making process to classify organized or unstructured data [10]. 

When it refers to characteristics that the human visual 

system cannot recognize, a well-trained deep neural network 

can notice and explain this similarity. The suggested model 

primarily pertains to helping medical experts with the prompt 

detection and recovery of people infected with COVID-19. The 

present image classification issue is a challenge that requires 

supervised learning [11,12]. Supervised learning is a learning 

technique in which an algorithm is trained on a labelled dataset, 

which means that the real classes of the samples are already 

supplied to the model, allowing it to adapt its parameters 

depending on the training accuracy [13,14]. As a solution to 

this problem, transfer learning was used to use strategies that 

had already been trained, a training network, and then to tweak 

the model for correct results and a quick end.  

2. Related works 

      Deep learning models have been more popular in recent 

years for screening, diagnosis, and therapy management of a 

variety of illnesses by extracting distinguishing characteristics 

from medical images. Several automated models for pathology 

detection and categorization, segmentation of contaminated 

zones, and severity monitoring have been implemented in 

response to the COVID-19 outbreak. Since the finding of 

COVID-19, so many experimental studies in a variety of fields 

have been conducted. Particularly in the past two years, the 

number of studies on the primary diagnosis caused by COVID-

19 using CNN-based methods rather than chest radiography 

has grown. The authors of [15] provided a system in which 

several CNN models used in ensemble learning were applied 

using transfer learning. They obtained various accuracy rates 

by training their ensembles using 16,700 X-ray scans from four 

publicly available datasets. A study [16] achieved 92.86 % 

accuracy with the AlexNet model and 94.23 % accuracy with 

the ResNet18 model in their classification investigation 

utilizing transfer learning on X-ray images of 1346 healthy and 

3883 pneumonia patients. The authors of [17] used three pre-

trained models to improve and normalize X-ray images to get 

a diagnosis accuracy of 90.3% for COVID-19. Deep transfer 

learning and whole-slide data were utilized in research to 

diagnose invasive ductal cancer. COVID-Net, a deep network 

for COVID-19 diagnosis developed in [18], accurately 

classified instances of COVID-19 with 92.4% accuracy. This 

paper [19] employed the VGG19, Inception, MobileNetV2, 

Xception, and ResNetV2 models, with the VGG19 model 

achieving the highest level of accuracy 93.48% on X-ray and 

CT scans. Deep learning models trained on these images 

improved the diagnostic utility of these images by simplifying 

lung recognition, infection localization, illness detection, and 

classification. Two deep learning models were used in this 

work for quick COVID-19 diagnosis. For identifying aberrant 

slices from CT volumes and illness detection, the first model 

was constructed with two CNN subnetworks, Inception ResNet 

v2 and ResNet18. The second model was created as a hybrid 

of the CNN and the Multilayer Perceptron (MLP) [20]. The 

MLP was trained for COVID-19 classification using joint 

feature vectors consisting of 512-dimensional data recovered 

from the CT image by the CNN and 12 clinical characteristics. 

When compared to human experts, this model is said to reach 

higher classification accuracy. Similarly, for COVID-19 

management using CT lung images, [21] suggested a two-stage 

deep learning approach. It forms a lung lesion segmentation 

network and a lesion map-trained detection network. Using 

clinical information and lung lesion characteristics generated 

from lesion maps, this approach offers prognosis analysis. 

Even though CT imaging tests are highly recommended in the 

diagnosis of COVID-19, various deep learning models based 

on X-ray images have recently been described, owing to their 

quick collection, low cost, and easy imaging mechanism.  

The authors [22] supply a public dataset called COVIDx, which 

has 13,975 X-ray images of 13,870 patients, as well as a deep 

learning network named COVID-Net, considering the 

importance of X-ray images in COVID-19. According to 

reports, this network has a classification accuracy of 93.3 %.  

A deep learning network was suggested by the authors of [23] 

for automating the COVID-19 diagnostic. The performance of 

their binary-class strategy was near 98%, while the 

performance of their multi-class strategy was near 87%. Three 

different modified ultramodern pre-trained models were 

created for the identification of normal, COVID-19, Lung 

Opacity (non-COVID-19 lung infection), and viral pneumonia 

cases. Three separate classification methods were performed 

on the dataset, including 21,165 X-ray images in this research. 

The accuracy, Sensitivity, specificity, error rate, precision, F1-

Score, confusion matrix, FP, MCC, and Kappa measures were 

used to assess the models' performance. The model with the 

best TP was used to create a test application. The results proved 

that the application worked well in practice and that it may be 

a helpful decision-making tool for specialists.  

        The rest of this work is arranged in the following manner: 

Sect. 2 presents a review of earlier work in the context of this 

study. The proposed data and the suggested methods are 

presented in detail in Section 3. Sect. 4 describes the model 

architecture used for the model and details of its 

implementation. Sect. 5 has the experimental findings, 

performance assessments, and comparisons. Section 6 

addresses the conclusions, as well as some future work. 

3. Material and Methods 

3.1. Data Preparation 

     COVID-19 Radiography Database1: A large dataset was 

created using chest X-ray images. This dataset includes 

information on COVID-19-positive patients as well as data on 
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normal individuals and those who have contracted viral 

pneumonia. The most recent release includes Posterior-to-

Anterior (PA) view images of 3616 COVID-19 positives, 

10192 normal, 6012 Lung Opacity, and 1345 Viral Pneumonia 

images. This dataset has received help from the work of 43 

distinct papers; the Italian SIRM dataset1, the COVID Chest 

X-ray Dataset [24], and the chest X-ray image database 2. 

Sample images from four different classes in the dataset are 

given in Fig. 1. 

 

Fig. 1: Cases of chest X-ray images of for classes from Kaggle dataset. 

3.2. Pre-processing  

        Image rescaling and normalization are used in image pre-

processing. The COVID-19 radiography image dataset is taken 

from the well-known Kaggle dataset, which is the actual data 

recently gathered. Along with photos for typical instances, the 

collection also contains chest X-ray images for four types of 

COVID-19 patients. The distribution of the radiography 

Kaggle dataset is shown in Fig. 2. Using Scikit-train learns to 

test split module, the dataset was used in the ratio of 90% for 

training and 10% for testing. Based on the split percent, the 

data is randomly split between the two sets by a random shuffle 

process. [25] uses a shuffle process algorithm introduced in 

[25] which uses a random generator number. Our selection is 

used in the shuffling algorithm to empirically arrive at the value 

of 120. The split is also stratified to make sure that a certain 

number of class samples are in each set.  

To address the issue, a thorough comparison of the three 

pre-trained transfer learning models currently being used is 

included. The three dels ResNet-50, Xception, and 

InceptionResNetV3 with hyperparameter tuning technique 

were performed on this data. This study provides the highest 

level of precision for X-ray images retrieved from three 

different databases. Additionally, effectiveness across the 

 
1 https://www.sirm.org/category/senza-categoria/covid-19/ 

database has been examined using the adjusted network 

architectures used for our research. The next suggestions are 

proposed by this study: 

 Applying the infrastructure of three common classification 

results to detect COVID-19. 

(i) Evaluating how these networks perform on X-ray 

imagery. 

(ii) Comparing and analyzing modelling measures. 

 

 

Fig. 2: The latest update version of the proposed COVID-19 

Radiography Database. 

4. Proposed Model 

     In this study, we developed a model architecture based on 

three pre-trained models and a block with three different 

regularization layers for the generalization process to reduce 

the over-fitting of the classification of COVID-19 chest X-ray 

images to normal, Lung Opacity, viral pneumonia, and 

COVID-19 classes. Additionally, to avoid starting from scratch 

with training data and save training time, we used a transfer 

learning technique developed using ImageNet data. Tunable 

parameters include the number of layers in a CNN model and 

the number of components in each layer, which change 

depending on the operation to be done. One of the most 

important requirements for a neural network model to provide 

highly accurate results is that it be trained with a large and 

diverse set of data. Much research employs ultramodern CNN 

models, which successfully classify nearly 14 million images 

in the ImageNet dataset and produce high-accuracy results 

when applied to diverse disciplines. Five of these models, 

which are often used in academia, were utilized to classify the 

data in this investigation.  

The images were scaled to 224 X 224 for consistency. 

Following this, ResNet-50, Xception, and InceptionResNetV3 

are three different CNN architectures that have been employed. 

To make use of its features with extensive knowledge and 

construct the model, a pre-trained model on the ImageNet 

database is used. Fig. 3 shows the architecture of the suggested 

CNN model applied to X-ray images. The Adamax optimizer 

2 https://www.kaggle.com/ paultimothymooney/chest-xray-pneumonia 
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was used to train the final model over 25 epochs, with a 0.001 

learning rate. With a 0.99 momentum and 0.001 epsilon, the 

Batch Normalization layer was introduced to the model. In 

addition, a dense layer of 64 neurons was added to the model 

with a rectified linear unit (ReLU) activation function, L2 

regularizers with a 0.001 value, and L1 regularizers with a 

0.006 value. The output of the base model was flattened 

because of the top layers of the three models being frozen. A 

fully connected (FC) layer with a (ReLU) activation function 

and an added dropout value of 0.4 was also added to the model. 

For classification, a final layer with SoftMax activation was 

then applied. 

Fig. 3: The general structure of a proposed CNN based TF learning 

framework with regularization. 
 

4.1. ResNet-50 Network 

ResNet, a CNN model, came out on top in the ImageNet 

competition with an error rate of just 3.5 % [26]. ResNet's 

structure is based on microarchitecture modules, in contrast to 

conventional sequential network models. Theoretically, 

success should rise with the number of layers in a model, but 

adding more parameters makes training and optimization more 

challenging. Low activity neurons in the neural network lose 

their effectiveness during training, and residues appear. Blocks 

that feed these residues to the following layers are added to 

build the ResNet. There are multiple ResNet variations that use 

a varied number of weighted layers. By allowing the gradient 

to travel across this added shortcut gradient, ResNet lessens the 

issue of vanishing gradients. If the current layer is not needed, 

the ResNet model can skip the CNN weight layer thanks to 

identity mapping. This aids in preventing the over-fitting issue 

with the ResNet50 training sets of 50 layers. 

4.2. Xception Network 

The Xception model was presented by Google [27]. The 

input format for the Xception is a 299x299 RGB image. With 

36 convolutional layers to extract features, it has a depth of 

126. To reduce the number of parameters, the fully connected 

layer is swapped out for a global average pooling layer, and the 

prediction is generated using the SoftMax function. Except for 

the first and end modules, all the 14 modules composed of the 

36 convolutional layers have linear skip connections 

surrounding them. Entry flow, middle flow, and exit flow are 

the three sections that form the 36 convolutional layers. The 

entry flow, the middle flow, which is repeated eight times, and 

the exit flow are all the steps that the data must initially go 

through. The middle flow is made up of 8*3=24 convolutional 

layers, the exit flow is made up of 4 convolutional layers, and 

the entering flow has 8 convolutional layers. The Xception. 

model uses depth-wise separable convolution, which can cut 

down on the overall cost of convolution operations. 

4.3. InceptionResNetV3 Network 

It has been proven to achieve an accuracy rate of more than 

78.1% on the ImageNet dataset, making it a widely used image 

recognition model. This model is the confluence of many 

concepts that researchers have developed over time [28]. A 

deep neural network with 42 layers makes up the Inception-v3. 

The inception-v3 model's building blocks include 

convolutions, max-pooling layers, average pooling, dropouts, 

and FC layers. For example, L1 and L2 regularizes are used to 

improve the learning process, and weight regularizes are used 

to encourage the network to support small weights [29]. It can 

be applied as a general strategy to decrease over-fitting during 

training and enhance the generalizability of the model. The 

addition of the batch normalization layer has a fundamental 

effect on network training, which smooths out the domain of 

the relevant optimization issue. This makes the gradients more 

predictable, enabling the adoption of a wider variety of learning 

rates and accelerating network convergence. Most large 

network architectures can be generalized using the dropout 

layer as a generalization technique. Also, it is integrated into 

the model architecture to overcome the risk of over-fitting. 

4.4. Grad Cam  

It is important to save either hardware or software resources 

for a faster and more accurate recognition [30]. The decision of 

the CNN is made upon a subset of extracted features from all 

parts of the input image [31]. This image parts varies from 

information content point of view [32]. There are only parts of 

the image that the most important attributes are localized. Our 

hypothesis is that the lugs area represents the most important 

image parts where the corresponding attributes plays the major 

rule of the CNN decision. In order to prove our hypothesis, we 

apply Grad Cam algorithm to highlight the most important 

image feature's location in blue, meanwhile the less important 

parts are marked with red. Each CNN supposed to perform 

diversly because of different architecture. The results of Grad 

Cam algorithm applied to the three CNN models returned 

identical results, meaning that all CNN’s agreed about where 

is the most important features are in the input chest image. 

5. Experimental Results 

a. Evaluation Settings 

The Keras framework was used to implement the Resnet-

50, Xception, and InceptionResNetV3 design architectures. 

Keras supplies pre-trained weights from the ImageNet dataset 
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for these pre-trained networks. Even though the images in the 

ImageNet dataset within which these networks are trained 

could not be equivalent to the images obtained for research, 

they can, however, help by passing new knowledge to better 

the intended task. Additionally, pre-trained weights reduce the 

need for a sizable quantity of training data. The Google Colab 

service was used to execute the programming code. A Tesla P4 

GPU was used to speed up processing. All the models were 

trained using the Adamax Optimizer, and categorical cross-

entropy served as the loss function. The batch size was set at 

training steps, and the epochs were set to 25 for training. 

b. Evaluation Parameters 

It is essential to measure classification effectiveness in image 

classification research to scientifically validate the study's 

findings. Image categorization research have made use of 

performance assessment measures. These metrics are also 

utilized in this research to assess the accuracy and reliability of 

the classification phase. The model's effectiveness is 

determined by several characteristics, including accuracy, 

sensitivity, specificity, error rate, precision, F1-Score, 

confusion matrix, FP, MCC, and Kappa. These are accuracy, 

specificity, sensitivity, and precision. When the data in the 

classes is unbalanced, the MCC metric is a beneficial measure. 

Equations 1–6 show related formulations for each of these 

measures based on TP, TN, FP, and FN outcomes. 

i. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐𝑐) =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
. (1) 

ii. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
. (2) 

iii. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. (3) 

iv. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. (4) 

v. 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
. (5) 

vi. 𝑀𝐶𝐶 =

𝑇𝑃×𝑇𝑁–𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)+(𝑇𝑃+𝐹𝑁)+(𝑇𝑁+𝐹𝑃)+(𝑇𝑁+𝐹𝑁)
. (6) 

The kappa statistic is a chance-corrected measure of agreement 

instead of correlation. Kappa eq. is described as follows: 

𝐾𝑎𝑝𝑝𝑎 =
(ƥ − ϝ)

(ƞ − ϝ)
. (7) 

Where ƥ is the real percentage of agreements among raters, ϝ 

is the predicted percentage of agreements, and ƞ is the overall 

count of observations. 

 

c. Evaluation Results 

The performance results for the testing data are based on 

three models, Resnet-50, Xception, and InceptionResNetV3 is 

shown in Fig. 4. Table 1, 2 present an overview of the findings 

from these three models. Variety metrics results are collected 

to get the actual predictions for all classes. Metrics such as 

accuracy, sensitivity, specificity, error rate, precision, F1-

Score, confusion matrix, FP, MCC, and Kappa have been 

measured to assess the performance of all the models. Three 

models' accuracy scores show that CNN architectures can 

reliably diagnose COVID-19 conditions.  

 

 

 

 

 

 

 

Fig. 4 Analysis of the proposed models based on various evaluation 

metrics. 

From Table 1, ResNet-50 outperforms the other two models 

with the all-metrics measures as shown in Fig. 4. In the ResNet-

50 and Xception models, the TNR, which measures the model's 

capacity to prevent false alarms, is greater than 93.6 %. 

However, only ResNet-50 is determined to have excellent error 

rate and sensitivity, which measures a model's ability to 

recognize positive cases. Although the Inception ResNet V3 

model is relatively like Xception, it can't be regarded as a 

robust model because of its lower detection rate. 

Table 1: Multi-Class Confusion matrix of the proposed model. 

Model Class TP FP FN TN 

ResNet-50 

COVID-19   177                                        6 0 875 

Normal 287               12                23               736 

Lung Opacity 479               21                18               540 

Viral Pneumonia 73                          3                 1 981 

Xception 

COVID-19 174                                             5 3 876 

Normal 283               17                27               731 

Lung Opacity 474               25                23               536      

Viral Pneumonia 74                6                 0               978      

Inception 

ResNetV3 

COVID-19 166               10                11               871 

Normal 281               23                29               725 

Lung Opacity 471               27                26               534 

Viral Pneumonia 73                7                  1                  977   
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Table 2: Present the evaluation metrics tested results for three pre-

trained models using X-ray images. 

Results 

Performance 
ResNet-50 Xception 

Inception 

ResNetV3 

Accuracy 0.9603 0.9499 0.9367 

Error Rate 0.0397 0.0501 0.0633 

Sensitivity 0.969 0.9624 0.9446 

Specificity 0.9842 0.9802 0.9757 

Precision 0.9614 0.9476 0.9315 

FP 0.0158 0.0198 0.0243 

F1-Score 0.965 0.9546 0.9377 

MCC 0.9493 0.9349 0.9134 

Kappa 0.8941 0.8664 0.8311 

According to Fig. 4 and Table 2, the suggested CNN model 

based on ResNet-50 has a testing accuracy of almost 96% and 

a specificity rate of 98%. Comparing the suggested model to 

existing models based on Xception and InceptionResNetV3 

networks using different metric findings, it is possible to 

conclude that the proposed model provides superior 

performance. In fact, employing many Covid-19 image 

databases as a training set almost generalizes the suggested 

model. This means that the proposed model can do very well 

when tested with data that wasn't used during this training 

stage. 

Another comparison to ensure the approach validity is 

through a comparison using a single  CPU load measured 

during performing TF  using original image database and only 

using the important image regions which is a relaxation 

approach to the model objective function during the exhausting 

search process. A faster way to use TF is guaranteed with CPU 

load evidence as in Fig. 6, which clarify the model CPU 

consumption decrease while TF using our approach of input 

image important regions measurement and localization using 

Grad Cam algorithm with application to only a single sample 

from the image database. 

Table 3: Evaluating the proposed model to current related research. 

Ref 
Classes 

Num. 
Accuracy Sensitivity Specificity 

[19] 3 93.4 98.7 92.8 

[33] 2 95 - - 

[16] 3 96.3 - - 

[34] 2 96.2 96.2 96.2 

[35] 2 90 - - 

[36] 2 94 - - 

Proposal 4 96 96.9 98.4 

Finally, Table 3 compares the performance of the proposed 

model to current studies. This table illustrates that the 

suggested method outperforms existing methods in terms of the 

number of types diagnosed and the percentage of analyzed 

cases.Grad Cam algorithm when applied to the three CNN 

models returned the images in Fig. 5. Using Grad Cam results, 

we retrained the TF models using only original image parts 

which are marked as important, meanwhile dropped the non-

important parts to zero. The proposed approach accelerates the 

training process exponentially besides scoring the same 

accuracy in test phase. 

 
  

Fig. 5: Grad Cam results, important feature location in the original 

image is marked in blue, the less importance in other colors grading 

to red for neglected image regions.  
 

 
Fig. 6: CPU load consumption using TF without/with important 

feature localization approach. 
 

6. Conclusion and Future Scope 

        Using chest imaging with deep learning algorithms 

provides a reliable and efficient strategy for detecting, 

diagnosing, and monitoring the progression of COVID-19 

conditions. We developed a CNN model pre-trained model 

based on X-ray images to supply a fast and accurate solution to 

COVID-19 detection. All networks had been pre-trained, 

which helped them transfer their prior weights and parameters 

experience to solve this problem. Fine-tuning and 

regularization blocks were added to our proposal on chest X-

ray imagery for better accuracy in COVID-19 diagnosis. The 

main idea of adding regularization block layers is to overcome 

CNN model challenges such as error bias and variance over-

https://sjsci.journals.ekb.eg/
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fitting. Different metrics are used to evaluate our models, such 

as accuracy, error rate, sensitivity, specificity, precision, FP, 

F1-Score, MCC, and Kappa. Experiments showed that the 

ResNet-50 pre-trained model has produced the greatest 

accuracy rate, up to 96%, among the three models. The same 

scores were obtained using reproduced version of the image 

database with only marked as important regions via Grad Cam 

algorithm. Hyothetical significance of both experiment settings 

proven by the performance metrics results found that the 

Resnet-50 model is the best model among others. In the future, 

researchers will evaluate whether a single X-ray scan can find 

multiple medical problems at once. The current work can be 

made better by adding CT images as a diagnostic tool for multi-

label modeling. As a challenge, there is frequently an enormous 

daily bulk release of medical image datasets. We need 

autonomous data techniques to be ready for production. 
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